Skip to main content

Plant Virus-Based Nanotechnologies

  • Chapter
  • First Online:
Women in Nanotechnology

Part of the book series: Women in Engineering and Science ((WES))

Abstract

Nanoscale engineering is revolutionizing disease detection and prevention. Viruses have made a remarkable contribution to these developments because they can function as prefabricated nanoparticles that have naturally evolved to deliver cargos to cells and tissues. The Steinmetz Lab has established a library of plant virus-based nanoparticles and carried out comprehensive structure–function studies that have shown how to tailor these nanomaterials appropriately for biomedical applications. By exploiting the benefits of synthetic and chemical biology, plant virus-based nanotechnologies are being developed for applications in molecular imaging and drug delivery, and as cancer vaccines and immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adis International Ltd. (2003). HIV Gp120 vaccine - VaxGen: AIDSVAX, AIDSVAX B/B, AIDSVAX B/E, HIV Gp120 Vaccine - Genentech, HIV Gp120 Vaccine AIDSVAX - VaxGen, HIV Vaccine AIDSVAX – VaxGen. Drugs in R&D, 4(4), 249–253.

    Article  Google Scholar 

  • Aljabali, A. A. A., Lomonossoff, G. P., & Evans, D. J. (2011). CPMV-polyelectrolyte-templated gold nanoparticles. Biomacromolecules, 12(7), 2723–2728.

    Article  Google Scholar 

  • Bruckman, M. A., Kaur, G., Lee, L. A., Xie, F., Sepulveda, J., Breitenkamp, R., Zhang, X., Joralemon, M., Russell, T. P., Emrick, T., & Wang, Q. (2008). Surface modification of tobacco mosaic virus with “click” chemistry. Chembiochem: A European Journal of Chemical Biology, 9(4), 519–523.

    Article  Google Scholar 

  • Bruckman, M. A., Jiang, K., Simpson, E. J., Randolph, L. N., Luyt, L. G., Yu, X., & Steinmetz, N. F. (2014a). Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Letters, 14(3), 1551–1558.

    Article  Google Scholar 

  • Bruckman, M. A., Randolph, L. N., VanMeter, A., Hern, S., Shoffstall, A. J., Taurog, R. E., & Steinmetz, N. F. (2014b). Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology, 449, 163–173.

    Article  Google Scholar 

  • Bruckman, M. A., VanMeter, A., & Steinmetz, N. F. (2015). Nanomanufacturing of tobacco mosaic virus-based spherical biomaterials using a continuous flow method. ACS Biomaterials Science & Engineering, 1(1), 13–18.

    Article  Google Scholar 

  • Cao, J., Guenther, R. H., Sit, T. L., Lommel, S. A., Opperman, C. H., & Willoughby, J. A. (2015). Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Applied Materials & Interfaces, 7(18), 9546–9553.

    Article  Google Scholar 

  • Chackerian, B., Rangel, M., Hunter, Z., & Peabody, D. S. (2006). Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-beta without concomitant T cell responses. Vaccine, 24(37–39), 6321–6331.

    Article  Google Scholar 

  • Chariou, P. L., & Steinmetz, N. F. (2017). Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano, 11(5), 4719–4730.

    Article  Google Scholar 

  • Czapar, A. E., Zheng, Y.-R., Riddell, I. A., Shukla, S., Awuah, S. G., Lippard, S. J., & Steinmetz, N. F. (2016). Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano, 10(4), 4119–4126.

    Article  Google Scholar 

  • Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M., & Young, M. (2002). Protein engineering of a viral cage for constrained nanomaterials synthesis. Advanced Materials, 14(6), 415–418.

    Article  Google Scholar 

  • Eber, F. J., Eiben, S., Jeske, H., & Wege, C. (2014). RNA-controlled assembly of tobacco mosaic virus-derived complex structures: From nanoboomerangs to tetrapods. Nanoscale, 7(1), 344–355.

    Article  Google Scholar 

  • Farkas, M. E., Aanei, I. L., Behrens, C. R., Tong, G. J., Murphy, S. T., O’Neil, J. P., & Francis, M. B. (2013). PET imaging and biodistribution of chemically modified bacteriophage MS2. Molecular Pharmaceutics, 10(1), 69–76.

    Article  Google Scholar 

  • Fulurija, A., Lutz, T. A., Sladko, K., Osto, M., Wielinga, P. Y., Bachmann, M. F., & Saudan, P. (2008). Vaccination against GIP for the treatment of obesity. PloS One, 3(9), e3163.

    Article  Google Scholar 

  • Geiger, F. C., Eber, F. J., Eiben, S., Mueller, A., Jeske, H., Spatz, J. P., & Wege, C. (2013). TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale, 5(9), 3808–3816.

    Article  Google Scholar 

  • Gerlich, W. H. (2015). Prophylactic vaccination against hepatitis B: Achievements, challenges and perspectives. Medical Microbiology and Immunology, 204(1), 39–55.

    Article  Google Scholar 

  • Harper, D. M. (2009). Currently approved prophylactic HPV vaccines. Expert Review of Vaccines, 8(12), 1663–1679.

    Article  Google Scholar 

  • Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., & Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (New York, N.Y.), 303(5663), 1526–1529.

    Article  Google Scholar 

  • Henao-Restrepo, A. M., Camacho, A., Longini, I. M., Watson, C. H., Edmunds, W. J., Egger, M., Carroll, M. W., Dean, N. E., Diatta, I., Doumbia, M., Draguez, B., Duraffour, S., Enwere, G., Grais, R., Gunther, S., Gsell, P.-S., Hossmann, S., Watle, S. V., Kondé, M. K., Kéïta, S., Kone, S., Kuisma, E., Levine, M. M., Mandal, S., Mauget, T., Norheim, G., Riveros, X., Soumah, A., Trelle, S., Vicari, A. S., Røttingen, J.-A., & Kieny, M.-P. (2017). Efficacy and effectiveness of an RVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). The Lancet, 389(10068), 505–518.

    Article  Google Scholar 

  • Hortobagyi, G. N. (2005). Trastuzumab in the treatment of breast cancer. New England Journal of Medicine, 353(16), 1734–1736.

    Article  Google Scholar 

  • Hou, B., Saudan, P., Ott, G., Wheeler, M. L., Ji, M., Kuzmich, L., Lee, L. M., Coffman, R. L., Bachmann, M. F., & DeFranco, A. L. (2011). Selective utilization of toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity, 34(3), 375–384.

    Article  Google Scholar 

  • Hovlid, M. L., Lau, J. L., Breitenkamp, K., Higginson, C. J., Laufer, B., Manchester, M., & Finn, M. G. (2014). Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS Nano, 8(8), 8003–8014.

    Article  Google Scholar 

  • Huang, X., Bronstein, L. M., Retrum, J., Dufort, C., Tsvetkova, I., Aniagyei, S., Stein, B., Stucky, G., McKenna, B., Remmes, N., Baxter, D., Kao, C. C., & Dragnea, B. (2007). Self-assembled virus-like particles with magnetic cores. Nano Letters, 7(8), 2407–2416.

    Article  Google Scholar 

  • Jegerlehner, A., Maurer, P., Bessa, J., Hinton, H. J., Kopf, M., & Bachmann, M. F. (2007). TLR9 signaling in B cells determines class switch recombination to IgG2a. Journal of Immunology (Baltimore, MD: 1950), 178(4), 2415–2420.

    Article  Google Scholar 

  • Jhaveri, K., & Esteva, F. J. (2014). Pertuzumab in the treatment of HER2+ breast cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 12(4), 591–598.

    Article  Google Scholar 

  • Klem, M. T., Willits, D., Young, M., & Douglas, T. (2003). 2-D array formation of genetically engineered viral cages on Au surfaces and imaging by atomic force microscopy. Journal of the American Chemical Society, 125(36), 10806–10807.

    Article  Google Scholar 

  • Knez, M., Bittner, A. M., Boes, F., Wege, C., Jeske, H., Maiβ, E., & Kern, K. (2003). Biotemplate synthesis of 3-Nm nickel and cobalt nanowires. Nano Letters, 3(8), 1079–1082.

    Article  Google Scholar 

  • Knobler, S., Lederberg, J., Pray, L. A., & Institute of Medicine (U.S.) (Eds.). (2002). Considerations for viral disease eradication: Lessons learned and future strategies: Workshop summary. Washington, DC: National Academy Press.

    Google Scholar 

  • Kohlhapp, F. J., Zloza, A., & Kaufman, H. L. (2015). Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs of Today (Barcelona, Spain: 1998), 51(9), 549–558.

    Google Scholar 

  • Koonin, E. V., Senkevich, T. G., & Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biology Direct, 1, 29.

    Article  Google Scholar 

  • Le, D. H. T., Lee, K. L., Shukla, S., Commandeur, U., & Steinmetz, N. F. (2017). Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 9(6), 2348–2357.

    Article  Google Scholar 

  • Lebel, M.-È., Chartrand, K., Tarrab, E., Savard, P., Leclerc, D., & Lamarre, A. (2016). Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Letters, 16(3), 1826–1832.

    Article  Google Scholar 

  • Lee, K. L., Carpenter, B. L., Wen, A. M., Ghiladi, R. A., & Steinmetz, N. F. (2016). High aspect ratio nanotubes formed by tobacco mosaic virus for delivery of photodynamic agents targeting melanoma. ACS Biomaterials Science & Engineering, 2(5), 838–844.

    Article  Google Scholar 

  • Lee, K. L., Murray, A. A., Le, D. H. T., Sheen, M. R., Shukla, S., Commandeur, U., Fiering, S., & Steinmetz, N. F. (2017). Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Letters, 17(7), 4019–4028.

    Article  Google Scholar 

  • Lizotte, P. H., Wen, A. M., Sheen, M. R., Fields, J., Rojanasopondist, P., Steinmetz, N. F., & Fiering, S. (2015). In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotechnology, 11(3), 295–303.

    Article  Google Scholar 

  • Loo, L., Guenther, R. H., Lommel, S. A., & Franzen, S. (2007). Encapsidation of nanoparticles by red clover necrotic mosaic virus. Journal of the American Chemical Society, 129(36), 11111–11117.

    Article  Google Scholar 

  • López-Macías, C., Ferat-Osorio, E., Tenorio-Calvo, A., Isibasi, A., Talavera, J., Arteaga-Ruiz, O., Arriaga-Pizano, L., Hickman, S. P., Allende, M., Lenhard, K., Pincus, S., Connolly, K., Raghunandan, R., Smith, G., & Glenn, G. (2011). Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine in a blinded, randomized, placebo-controlled trial of adults in Mexico. Vaccine, 29(44), 7826–7834.

    Article  Google Scholar 

  • Lua, L. H. L., Connors, N. K., Sainsbury, F., Chuan, Y. P., Wibowo, N., & Middelberg, A. P. J. (2014). Bioengineering virus-like particles as vaccines: Virus-like particles as vaccines. Biotechnology and Bioengineering, 111(3), 425–440.

    Article  Google Scholar 

  • Luque, D., de la Escosura, A., Snijder, J., Brasch, M., Burnley, R. J., Koay, M. S. T., Carrascosa, J. L., Wuite, G. J. L., Roos, W. H., Heck, A. J. R., Cornelissen, J. J. L. M., Torres, T., & Castón, J. R. (2013). Self-assembly and characterization of small and monodisperse dye nanospheres in a protein cage. Chemical Science, 5(2), 575–581.

    Article  Google Scholar 

  • Miller, R. A., Presley, A. D., & Francis, M. B. (2007). Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. Journal of the American Chemical Society, 129(11), 3104–3109.

    Article  Google Scholar 

  • Pokorski, J. K., & Steinmetz, N. F. (2011). The art of engineering viral nanoparticles. Molecular Pharmaceutics, 8(1), 29–43.

    Article  Google Scholar 

  • Prangishvili, D., & Garrett, R. A. (2005). Viruses of hyperthermophilic crenarchaea. Trends in Microbiology, 13(11), 535–542.

    Article  Google Scholar 

  • Prangishvili, D., Forterre, P., & Garrett, R. A. (2006). Viruses of the Archaea: A unifying view. Nature Reviews Microbiology, 4(11), 837–848.

    Article  Google Scholar 

  • Quentin, M., Abad, P., & Favery, B. (2013). Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Frontiers in Plant Science, 4, 53.

    Article  Google Scholar 

  • Rachel, R., Bettstetter, M., Hedlund, B. P., Häring, M., Kessler, A., Stetter, K. O., & Prangishvili, D. (2002). Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Archives of Virology, 147(12), 2419–2429.

    Article  Google Scholar 

  • Riedel, S. (2005). Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University Medical Center), 18(1), 21–25.

    Article  Google Scholar 

  • Shukla, S., Ablack, A. L., Wen, A. M., Lee, K. L., Lewis, J. D., & Steinmetz, N. F. (2013). Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle potato virus X. Molecular Pharmaceutics, 10(1), 33–42.

    Article  Google Scholar 

  • Shukla, S., Eber, F. J., Nagarajan, A. S., DiFranco, N. A., Schmidt, N., Wen, A. M., Eiben, S., Twyman, R. M., Wege, C., & Steinmetz, N. F. (2015). The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Advanced Healthcare Materials, 4(6), 874–882.

    Article  Google Scholar 

  • Shukla, S., Dorand, R. D., Myers, J. T., Woods, S. E., Gulati, N. M., Stewart, P. L., Commandeur, U., Huang, A. Y., & Steinmetz, N. F. (2016). Multiple administrations of viral nanoparticles alter in vivo behavior—Insights from intravital microscopy. ACS Biomaterials Science & Engineering, 2(5), 829–837.

    Article  Google Scholar 

  • Shukla, S., Myers, J. T., Woods, S. E., Gong, X., Czapar, A. E., Commandeur, U., Huang, A. Y., Levine, A. D., & Steinmetz, N. F. (2017). Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials, 121, 15–27.

    Article  Google Scholar 

  • Sonderegger, I., Röhn, T. A., Kurrer, M. O., Iezzi, G., Zou, Y., Kastelein, R. A., Bachmann, M. F., & Kopf, M. (2006). Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. European Journal of Immunology, 36(11), 2849–2856.

    Article  Google Scholar 

  • Spohn, G., Keller, I., Beck, M., Grest, P., Jennings, G. T., & Bachmann, M. F. (2008). Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. European Journal of Immunology, 38(3), 877–887.

    Article  Google Scholar 

  • Tissot, A. C., Maurer, P., Nussberger, J., Sabat, R., Pfister, T., Ignatenko, S., Volk, H.-D., Stocker, H., Müller, P., Jennings, G. T., Wagner, F., & Bachmann, M. F. (2008). Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: A double-blind, randomised, placebo-controlled phase IIa study. The Lancet, 371(9615), 821–827.

    Article  Google Scholar 

  • Wang, Q., Lin, T., Johnson, J. E., & Finn, M. G. (2002). Natural supramolecular building blocks. Chemistry & Biology, 9(7), 813–819.

    Article  Google Scholar 

  • Wen, A. M., & Steinmetz, N. F. (2014). The aspect ratio of nanoparticle assemblies and the spatial arrangement of ligands can be optimized to enhance the targeting of cancer cells. Advanced Healthcare Materials, 3(11), 1739–1744.

    Article  Google Scholar 

  • Wen, A. M., & Steinmetz, N. F. (2016). Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews, 45(15), 4074–4126.

    Article  Google Scholar 

  • Wen, A. M., Shukla, S., Saxena, P., Aljabali, A. A. A., Yildiz, I., Dey, S., Mealy, J. E., Yang, A. C., Evans, D. J., Lomonossoff, G. P., & Steinmetz, N. F. (2012). Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules, 13(12), 3990–4001.

    Article  Google Scholar 

  • Wen, A. M., Rambhia, P. H., French, R. H., & Steinmetz, N. F. (2013). Design rules for nanomedical engineering: From physical virology to the applications of virus-based materials in medicine. Journal of Biological Physics, 39(2), 301–325.

    Article  Google Scholar 

  • Wen, A. M., Le, N., Zhou, X., Steinmetz, N. F., & Popkin, D. L. (2015a). Tropism of CPMV to professional antigen presenting cells enables a platform to eliminate chronic infections. ACS Biomaterials Science & Engineering, 1(11), 1050–1054.

    Article  Google Scholar 

  • Wen, A. M., Wang, Y., Jiang, K., Hsu, G. C., Gao, H., Lee, K. L., Yang, A. C., Yu, X., Simon, D. I., & Steinmetz, N. F. (2015b). Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 3(29), 6037–6045.

    Article  Google Scholar 

  • Wen, A. M., Lee, K. L., Cao, P., Pangilinan, K., Carpenter, B. L., Lam, P., Veliz, F. A., Ghiladi, R. A., Advincula, R. C., & Steinmetz, N. F. (2016). Utilizing viral nanoparticle/dendron hybrid conjugates in photodynamic therapy for dual delivery to macrophages and cancer cells. Bioconjugate Chemistry, 27(5), 1227–1235.

    Article  Google Scholar 

  • Yildiz, I., Lee, K. L., Chen, K., Shukla, S., & Steinmetz, N. F. (2013). Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: Cargo-loading and delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 172(2), 568–578.

    Article  Google Scholar 

Download references

Acknowledgements

This was funded in part by the following grants to N.F.S.: NIH R01-CA224605, NIH R01-HL137674, NIH U01-CA218292, NIH R21-EB024874, NIH R01-CA202814, NIH R21-HL121130, NIH R21-EB020946, American Cancer Society 128319-RSG-15-144-01-CDD, NSF DMR-1452257 CAREER, NSF CMMI-1333651, NSF CHE-1306447, and Susan G. Komen CCR14298962. A.M.W. was supported through the following fellowships: NIH T32 EB007509, AHA 15PRE25710044, and NIH F31 HL129703, and K.L.L. was supported by the following fellowships: NIH T32 EB007509 and NIH R25 CA148052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole F. Steinmetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wen, A.M., Lee, K.L., Steinmetz, N.F. (2020). Plant Virus-Based Nanotechnologies. In: Norris, P., Friedersdorf, L. (eds) Women in Nanotechnology. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-19951-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19951-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19950-0

  • Online ISBN: 978-3-030-19951-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics