Skip to main content

Cancer Immunotherapy

  • Chapter
  • First Online:
Pharmacology of Immunotherapeutic Drugs

Abstract

Cancer is the second leading cause of death in the United States, accounting for approximately 23% of deaths from all causes. Cancer results from a multifactorial process characterized by uncontrolled cell growth as a result of inherited and de novo genetic mutations. Because their intrinsic regulation of gene expression has been altered from normal, cancer cells may resemble virus-infected cells in term of antigens produced. Thus, the immune system can typically identify, control, and eliminate precancerous cells the same way it would a virus-infected cell via recognition of MHC I. Abnormal cells that are able to avoid immune system recognition and removal will then have the opportunity to acquire more mutations, and continue to grow, ultimately developing into malignant tumors. There are various treatments for cancer that utilize immune targets, and depending on the type of cancer, they may suppress or even stimulate the immune system. Treatments for cancers of lymphocyte origin are generally aimed at suppressing their proliferation. Alternatively, immunotherapeutic treatments for certain tumors are aimed at stimulating the activation of T-cells that can help kill tumor cells. Other immunotherapeutic treatments utilize tumor-associated or specific antigens as targets of monoclonal antibodies in an effort to tag these cells for removal or alter their signaling processes. Because many cancer treatments often result in myelosuppression (anemia, neutropenia), treatment of chemotherapy-induced myelosuppression is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  • Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018;19:76–84.

    Article  CAS  Google Scholar 

  • Connell CM, Doherty GJ. Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO Open. 2017;2(5):e000279.

    Article  Google Scholar 

  • Cooper MD, Peterson RD, Good RA. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature. 1965;205:143–6.

    Article  CAS  Google Scholar 

  • Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100(2):228–37.

    Article  Google Scholar 

  • D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91:4082–5.

    Article  Google Scholar 

  • DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–53.

    Article  CAS  Google Scholar 

  • Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun Highlights. 2017;8(1):12.

    Article  Google Scholar 

  • Ferreira JN, Correia LRBR, Oliveira RM, Watanabe SN, Possari JF, Lima AFC. Managing febrile neutropenia in adult cancer patients: an integrative review of the literature. Rev Bras Enferm. 2017;70(6):1301–8.

    Article  Google Scholar 

  • Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet. 2004;363:1802–11.

    Article  CAS  Google Scholar 

  • Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11(2):263–75.

    Article  CAS  Google Scholar 

  • Gao Z-W, Ke Dong K, Zhang H-Z. The roles of CD73 in cancer. Biomed Res Int. 2014;2014:460654.

    PubMed  PubMed Central  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  Google Scholar 

  • Hassan MN, Waller EK. Treating chemotherapy-induced thrombocytopenia: is it time for oncologists to use thrombopoietin agonists? Oncology. 2015;29(4):295–6.

    PubMed  Google Scholar 

  • Javier RT, Butel JS. The history of tumor virology. Cancer Res. 2008;68(19):7693–706.

    Article  CAS  Google Scholar 

  • King T, Jagger J, Wood J, Woodrow C, Snowden A, Haines S, Crosbie C, Houdyk K. Best practice for the administration of daratumumab in multiple myeloma: Australian myeloma nurse expert opinion. Asia Pac J Oncol Nurs. 2018;5(3):270–84.

    Article  Google Scholar 

  • Kourlaba G, Dimopoulos MA, Pectasides D, Skarlos DV, Gogas H, Pentheroudakis G, et al. Comparison of filgrastim and pegfilgrastim to prevent neutropenia and maintain dose intensity of adjuvant chemotherapy in patients with breast cancer. Support Care Cancer. 2015;23(7):2045–51.

    Article  Google Scholar 

  • Kuter DJ. Managing thrombocytopenia associated with cancer chemotherapy. Oncology. 2015;29(4):282–94.

    PubMed  Google Scholar 

  • Leibbrandt A, Penninger JM. Novel functions of RANK(L) signaling in the immune system. Adv Exp Med Biol. 2010;658:77–94.

    Article  CAS  Google Scholar 

  • Li S, Pal R, Monaghan SA, Schafer P, Ouyang H, Mapara M, Galson DL, Lentzsch S. IMiD immunomodulatory compounds block C/EBP{beta} translation through eIF4E down-regulation resulting in inhibition of MM. Blood. 2011;117:5157–65.

    Article  CAS  Google Scholar 

  • Lian Y, Meng L, Ding P, Sang M. Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin Epigenetics. 2018;10:115.

    Article  Google Scholar 

  • Magen H, Muchtar E. Elotuzumab: the first approved monoclonal antibody for multiple myeloma treatment. Ther Adv Hematol. 2016;7(4):187–95.

    Article  CAS  Google Scholar 

  • Miller JF. Immunological function of the thymus. Lancet. 1961;2(7205):748–9.

    Article  CAS  Google Scholar 

  • Millrine D, Kishimoto T. A brighter side to thalidomide: its potential use in immunological disorders. Trends Mol Med. 2017;23:348–61.

    Article  CAS  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002a;99:4525–30.

    Article  CAS  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002b;99:4079–86.

    Article  CAS  Google Scholar 

  • Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DV, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    Article  CAS  Google Scholar 

  • Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment. Immunity. 2007;26(6):715–25.

    Article  CAS  Google Scholar 

  • Parcesepe P, Giordano G, Laudanna C, Febbraro A, Massimo Pancione M. Cancer-associated immune resistance and evasion of immune surveillance in colorectal cancer. Gastroenterol Res Pract. 2016;2016:6261721.

    Article  Google Scholar 

  • Ronson A, Tvito A, Rowe JM. Treatment of relapsed/refractory acute lymphoblastic leukemia in adults. Curr Oncol Rep. 2016;18(6):39.

    Article  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  Google Scholar 

  • Sharma P. Kumar P,2 and Sharma R. Natural killer cells—their role in tumour immunosurveillance. J Clin Diagn Res. 2017;11(8):BE01–5.

    PubMed  PubMed Central  Google Scholar 

  • Sheskin J. Thalidomide in the treatment of Lepra reactions. Clin Pharmacol Ther. 1965;6:303–6.

    Article  CAS  Google Scholar 

  • Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen E. Szollosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szollosi, D.E., Kinney, S.R.M., Ruhul Amin, A.R.M., Chumbow, N. (2020). Cancer Immunotherapy. In: Mathias, C., McAleer, J., Szollosi, D. (eds) Pharmacology of Immunotherapeutic Drugs. Springer, Cham. https://doi.org/10.1007/978-3-030-19922-7_10

Download citation

Publish with us

Policies and ethics