Skip to main content

Towards a Definition of Educational Robotics: A Classification of Tools, Experiences and Assessments

  • Chapter
  • First Online:

Abstract

Robotics in education (RiE) covers a variety of applications of robots to the world of teaching and learning. Despite all the benefits that robotics can bring to education, a clear definition of the purpose for introducing robotics in education is still missing. Authors aim at facing this issue proposing a classification of RiE experiences, stating the difference between RiE and educational robotics (ER). The need for this classification arises from the wide usage of ER to indicate a diverse range of activities using robots and from the lack of clarity when describing how ER impacts students’ curricula. Moreover, a definition of ER can impact the definition of the policies on the integration of ER into formal and non-formal education; it can also provide a basis for further studies whose aim is to provide clear evidence on the benefits of ER activities; finally, it can enhance the replicability of ER activities. To better characterise ER, authors propose two more classifications: one for the robotic tools used in the ER activities and one for the evaluation of ER activities. Drawing upon the proposed classifications, authors point out some distinctive features of ER comparing them to literature. This general outline aims at creating a starting point to open a debate on the definition of ER.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future of Learning Group Publication, 5(3), 438.

    Google Scholar 

  • Akagi, T., Fujimoto, S., Kuno, H., Araki, K., Yamada, S., & Dohta, S. (2015). Systematic educational program for robotics and mechatronics engineering in OUS using robot competition. Procedia Computer Science, 76, 2–8.

    Article  Google Scholar 

  • Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63–71.

    Google Scholar 

  • Angel-Fernandez, J. M., & Vincze, M. (2018). Towards a formal definition of educational robotics. In P. Zech & J. Piater (Eds.), Proceedings of the austrian robotics workshop 2018 (Conference series). Innsbruck: Innsbruck University Press. https://doi.org/10.15203/3187-22-1.

    Chapter  Google Scholar 

  • Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers & Education, 113, 177–194.

    Article  Google Scholar 

  • Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661–670.

    Article  Google Scholar 

  • Baker, R.S., Corbett, A.T., & Koedinger, K. R. (2004). Detecting student misuse of intelligent tutoring systems. In Proceedings of the 7th international conference on intelligent tutoring systems (pp. 531–540).

    Google Scholar 

  • Beck, J. E., & Woolf, B. P. (2000). High-level student modeling with machine learning. In G. Gauthier, C. Frasson, & K. VanLehn (Eds.), Intelligent tutoring systems (Lecture notes in computer science) (pp. 584–593). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bellas, F., Naya, M., Varela, G., Llamas, L., Prieto, A., Becerra, J. C., Bautista, M., Fain, A., & Duro, R. (2018). The Robobo project: Bringing educational robotics closer to real-world applications. In W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in education. RiE 2017. Advances in intelligent systems and computing (Vol. 630). Cham: Springer.

    Chapter  Google Scholar 

  • Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science robotics, 3(21), eaat5954.

    Article  Google Scholar 

  • Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978–988.

    Article  Google Scholar 

  • Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to understand the learning pathways of novice programmers. Journal of the Learning Sciences, 22(4), 564–599.

    Article  Google Scholar 

  • Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational data mining and learning analytics: Applications to constructionist research. Technology, Knowledge and Learning, 19(1–2), 205–220.

    Article  Google Scholar 

  • Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157.

    Article  Google Scholar 

  • Bharatharaj, J., Huang, L., Krägeloh, C., Elara, M. R., & Al-Jumaily, A. (2018). Social engagement of children with autism spectrum disorder in interaction with a parrot-inspired therapeutic robot. Procedia Computer Science, 133, 368–376.

    Article  Google Scholar 

  • Blikstein, P., & Worsley, M. (2016). Multimodal learning analytics and education data mining: Using computational technologies to measure complex learning tasks. Journal of Learning Analytics, 3(2), 220–238.

    Article  Google Scholar 

  • Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming pluralism: Using learning analytics to detect patterns in the learning of computer programming. Journal of the Learning Sciences, 23(4), 561–599.

    Article  Google Scholar 

  • Blikstein, P., Kabayadondo, Z., Martin, A., & Fields, D. (2017). An assessment instrument of technological literacies in makerspaces and FabLabs. Journal of Engineering Education, 106(1), 149–175.

    Article  Google Scholar 

  • Breazeal, C., Dautenhahn, K., & Kanda, T. (2016). Social robotics. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 1935–1972). Cham: Springer.

    Chapter  Google Scholar 

  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369–387.

    Article  Google Scholar 

  • Cannon, K. R., Panciera, K. A., & Papanikolopoulos, N. P. (2007). Second annual robotics summer camp for underrepresented students. ACM SIGCSE Bulletin, 39(3), 14–18. ACM.

    Article  Google Scholar 

  • Castro, E., Cecchi, F., Valente, M., Buselli, E., Salvini, P., & Dario, P. (2018). Can educational robotics introduce young children to robotics and how can we measure it? Journal of Computer Assisted Learning, 34(6), 970–977.

    Article  Google Scholar 

  • Cesaretti, L., Storti, M., Mazzieri, E., Screpanti, L., Paesani, A., Principi, P., & Scaradozzi, D. (2017). An innovative approach to school-work turnover programme with educational robotics. Mondo Digitale, 16(72), 2017–2015.

    Google Scholar 

  • Chalmers, C. (2018). Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93–100.

    Article  Google Scholar 

  • Chang, C. W., Lee, J. H., Chao, P. Y., Wang, C. Y., & Chen, G. D. (2010). Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school. Journal of Educational Technology & Society, 13(2), 13–24.

    Google Scholar 

  • Chen, X. (2019). How does participation in FIRST LEGO league robotics competition impact children’s problem-solving process? In W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in education. RiE 2018. Advances in intelligent systems and computing (Vol. 829, pp. 162–167). Cham: Springer.

    Chapter  Google Scholar 

  • Cook, A. M., Bentz, B., Harbottle, N., Lynch, C., & Miller, B. (2005). School-based use of a robotic arm system by children with disabilities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(4), 452–460.

    Article  Google Scholar 

  • Costantini, R., Laura, L., Mazza, L., & Santilli, R. (2017). STEAM – un nuovo framework didattico per l’Alternanza Scuola Lavoro: Coding, robotica e design nel Milano Luiss Hub (STEAM – a new educational framework for the alternating school-work programme: Coding, robotics and design at the Milano Luiss Hub). In Proceedings of DIDAMATICA 2017.

    Google Scholar 

  • Cross, J. L., Hamner, E., Bartley, C., & Nourbakhsh, I. (2015). Arts & Bots: application and outcomes of a secondary school robotics program. In Frontiers in Education Conference (FIE), 2015 IEEE (pp. 1–9). IEEE.

    Google Scholar 

  • Cross, J. L., Hamner, E., Zito, L., & Nourbakhsh, I. (2017). Student outcomes from the evaluation of a transdisciplinary middle school robotics program. In Proceedings of Frontiers in Education Conference (FIE) (pp. 1–9). IEEE.

    Google Scholar 

  • Daniela, L., & Strods, R. (2018). Robot as agent in reducing risks of early school leaving. In L. Daniela (Ed.), Innovations, technologies and research in education (pp. 140–158). Newcastle upon Tyne: Cambridge Scholars Publishing. ISBN (10): 1-5275-0622-3.

    Google Scholar 

  • Daniela, L., Strods, R., & Alimisis, D. (2017). Analysis of Robotics-based Learning Interventions for Preventing School Failure and Early School Leaving in Gender Context. In Proceedings of the 9th International Conference on Education and New Learning Technologies (Edulearn17) (pp. 810–818). 3–5 July, 2017, Barcelona, Spain. ISBN 9788469737774. ISSN 2340-1117.

    Google Scholar 

  • Dann, R. (2014). Assessment as learning: Blurring the boundaries of assessment and learning for theory, policy and practice. Assessment in Education: Principles, Policy & Practice, 21(2), 149–166.

    Google Scholar 

  • Denicolai, L., Grimaldi, R., & Palmieri, S. (2018). Robotica e linguaggio audiovisivo: Quando le tecnologie si parlano (robotics and audio-visual language: When different technologies communicate with each other). In Proceedings of DIDAMATICA 2018. Cesena, Italy: AICA.

    Google Scholar 

  • Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., Laschi, C., Pecini, C., Santerini, G., Sgandurra, G., & Dario, P. (2017). Educational robotics intervention on executive functions in preschool children: A pilot study. Computers in Human Behavior, 71, 16–23.

    Article  Google Scholar 

  • Eguchi, A. (2014). Robotics as a learning tool for educational transformation. In Proceeding of 4th International Workshop Teaching Robotics, Teaching with Robotics & 5th International Conference Robotics in Education (pp. 27–34). Padova (Italy).

    Google Scholar 

  • Eguchi, A. (2015). Educational robotics to promote 21 st century skills and technological understanding among underprivileged undergraduate students. In Integrated STEM Education Conference (ISEC), 2015 IEEE (pp. 76–82). IEEE.

    Google Scholar 

  • Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692–699.

    Article  Google Scholar 

  • Eguchi, A. (2017). Bringing robotics in classrooms. In M. Khine (Ed.), Robotics in STEM education (pp. 3–31). Cham: Springer.

    Chapter  Google Scholar 

  • Ferrarelli, P., Villa, W., Attolini, M., Cesareni, D., Micale, F., Sansone, N., Pantaleone, L. C., & Iocchi, L. (2018). Improving students’ concepts about Newtonian mechanics using Mobile robots. In International conference on robotics and education (RiE) 2017 (pp. 113–124). Cham: Springer.

    Google Scholar 

  • Frangou, S., Papanikolaou, K., Aravecchia, L., Montel, L., Ionita, S., Arlegui, J., Pina, A., Menegatti, E., Moro, M., Fava, N., & Monfalcon, S. (2008). Representative examples of implementing educational robotics in school based on the constructivist approach. In Workshop proceedings of SIMPAR (pp. 54–65).

    Google Scholar 

  • Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & Education, 70, 53–64.

    Article  Google Scholar 

  • Fridin, M., & Belokopytov, M. (2014). Acceptance of socially assistive humanoid robot by preschool and elementary school teachers. Computers in Human Behavior, 33, 23–31.

    Article  Google Scholar 

  • Goldman, R., Eguchi, A., & Sklar, E. (2004). Using educational robotics to engage inner-city students with technology. In Proceedings of the 6th international conference on learning sciences (pp. 214–221). International Society of the Learning Sciences.

    Google Scholar 

  • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.

    Article  Google Scholar 

  • Holt, R., Weightman, A., Gallagher, J., Preston, N., Levesley, M., Mon-Williams, M., & Bhakta, B. (2013). A system in the wild: Deploying a two player arm rehabilitation system for children with cerebral palsy in a school environment. Journal of Usability Studies, 8(4), 111–126.

    Google Scholar 

  • Horn, M. S., Solovey, E. T., & Jacob, R. J. (2008). Tangible programming and informal science learning: Making TUIs work for museums. In Proceedings of the 7th international conference on interaction design and children (pp. 194–201). ACM.

    Google Scholar 

  • Iacobelli, C. (2010). I robot a scuola: l’esperienza insegna (Robots at school: experience teaches). Retrieved from http://www.robocupjr.it/roboscuola/2010_atti/cesareiacobelli_x.pdf

  • Iacobelli, C. and Spano A. (2011). Competizioni di robotica: Nuovi percorsi per la didattica (robotics competitions: New pathways for teaching and learning). In Proceedings of DIDAMATICA 2011. Turin, Italy. AICA.

    Google Scholar 

  • Jeon, M., FakhrHosseini, M., Barnes, J., Duford, Z., Zhang, R., Ryan, J., & Vasey, E. (2016). Making live theatre with multiple robots as actors: Bringing robots to rural schools to promote STEAM education for underserved students. In The 11th ACM/IEEE international conference on human robot interaction (pp. 445–446). IEEE Press.

    Google Scholar 

  • Jormanainen, I., & Sutinen, E. (2012). Using data mining to support teacher’s intervention in a robotics class. In Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), 2012 IEEE Fourth International Conference on (pp. 39–46). IEEE.

    Google Scholar 

  • Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4), 905.

    Article  Google Scholar 

  • Junior, L. A., Neto, O. T., Hernandez, M. F., Martins, P. S., Roger, L. L., & Guerra, F. A. (2013). A low-cost and simple arduino-based educational robotics kit. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Robotics and Control (JSRC), December edition, 3(12), 1–7.

    Google Scholar 

  • Kandlhofer, M., & Steinbauer, G. (2016). Evaluating the impact of educational robotics on pupils’ technical-and social-skills and science related attitudes. Robotics and Autonomous Systems, 75, 679–685.

    Article  Google Scholar 

  • Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C. N. (2015). Robotics to promote elementary education pre-service teachers’ STEM engagement, learning, and teaching. Computers & Education, 91, 14–31.

    Article  Google Scholar 

  • Kory Westlund, J., Gordon, G., Spaulding, S., Lee, J. J., Plummer, L., Martinez, M., Das, M., & Breazeal, C. (2016). Lessons from teachers on performing HRI studies with young children in schools. In the 11th ACM/IEEE International Conference on Human Robot Interaction (pp. 383–390). IEEE Press.

    Google Scholar 

  • Kucuk, S., & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Computers & Education, 111, 31–43.

    Article  Google Scholar 

  • Lindh, J¸ Holgersson, T. (2007). Does lego training stimulate pupils ability to solve logical problems? Computers & Education, 49 (4), 1097–1111.

    Article  Google Scholar 

  • Lins, A. A., de Oliveira, J. M., Rodrigues, J. J., & de Albuquerque, V. H. C. (2018). Robot-assisted therapy for rehabilitation of children with cerebral palsy-a complementary and alternative approach. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2018.05.012.

  • Martinez, S. L., & Stager, G. (2013). Invent to learn: Making, tinkering, and engineering in the classroom. Torrance, CA: Constructing modern knowledge press.

    Google Scholar 

  • Matarić, M. J., & Scassellati, B. (2016). Socially assistive robotics. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 1973–1994). Cham: Springer Handbooks. Springer.

    Chapter  Google Scholar 

  • Mengoni, S. E., Irvine, K., Thakur, D., Barton, G., Dautenhahn, K., Guldberg, K., Robins, B., Wellsted, D., & Sharma, S. (2017). Feasibility study of a randomised controlled trial to investigate the effectiveness of using a humanoid robot to improve the social skills of children with autism spectrum disorder (Kaspar RCT): A study protocol. BMJ Open, 7(6), e017376.

    Article  Google Scholar 

  • Merceron, A., & Yacef, K. (2004). Mining student data captured from a web-based tutoring tool: Initial exploration and results. Journal of Interactive Learning Research, 15(4), 319–346.

    Google Scholar 

  • Mevarech, Z. R., & Kramarski, B. (1993). Vygotsky and Papert: Social-cognitive interactions within logo environments. British Journal of Educational Psychology, 63, 96–109. https://doi.org/10.1111/j.2044-8279.1993.tb01044.x.

    Article  Google Scholar 

  • Micotti, F., Fiocchi, E. and Giurato, M. (2017). Introdurre la robotica nelle scuole secondarie, un approccio progettuale (Introducing Robotics into secondary schools, a planning approach). In Proceedings of DIDAMATICA 2017.

    Google Scholar 

  • Miller, D. P., & Nourbakhsh, I. (2016). Robotics for education. In Springer handbook of robotics (pp. 2115–2134). Cham: Springer.

    Chapter  Google Scholar 

  • Montero, C. S., & Jormanainen, I. (2016). Theater meets robot–toward inclusive STEAM education. In International conference EduRobotics 2016 (pp. 34–40). Cham: Springer.

    Google Scholar 

  • Moro, M., Agatolio, F., & Menegatti, E. (2018). The RoboESL project: Development, evaluation and outcomes regarding the proposed robotic enhanced curricula. International Journal of Smart Education and Urban Society (IJSEUS), 9(1), 48–60.

    Article  Google Scholar 

  • Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(1–7), 13.

    Google Scholar 

  • Naya, M., Varela, G., Llamas, L., Bautista, M., Becerra, J. C., Bellas, F., Abraham Prieto, Alavaro Deibe & Duro, R. J. (2017). A versatile robotic platform for educational interaction. In Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2017 9th IEEE International Conference on (Vol. 1, pp. 138–144). IEEE.

    Google Scholar 

  • Oreggia, M., Chiorri, C., Pozzi, F., & Tacchella, A. (2016, July). Introducing Computer Engineering Curriculum to Upper Secondary Students: An Evaluation of Experiences Based on Educational Robotics. In 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) (pp. 293–294). IEEE.

    Google Scholar 

  • Ornelas, F., & Ordonez, C. (2017). Predicting student success: A Naïve Bayesian application to community college data. Technology, Knowledge and Learning, 22(3), 299–315.

    Article  Google Scholar 

  • Ospennikova, E., Ershov, M., & Iljin, I. (2015). Educational robotics as an innovative educational technology. Procedia-Social and Behavioral Sciences, 214, 18–26.

    Article  Google Scholar 

  • Ozgur, A. G., Wessel, M. J., Johal, W., Sharma, K., Özgür, A., Vuadens, P., Francesco Mondada, Friedhelm Christoph Hummel & Dillenbourg, P. (2018). Iterative design of an upper limb rehabilitation game with tangible robots. In ACM/IEEE International Conference on Human-Robot Interaction (HRI) (p. 187).

    Google Scholar 

  • Palsbo, S. E., & Hood-Szivek, P. (2012). Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: A nonrandomized phase 2 device trial. American Journal of Occupational Therapy, 66(6), 682–690.

    Article  Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books, Inc.

    Google Scholar 

  • Papert, S. (1991). Situating constructionism. In S. Papert & I. Harel (Eds.), Constructionism (pp. 1–11). Norwood, NJ: Ablex Publishing.

    Google Scholar 

  • Polishuk, A., & Verner, I. (2017). Student-robot interactions in museum workshops: Learning activities and outcomes. In M. Merdan, W. Lepuschitz, G. Koppensteiner, & R. Balogh (Eds.), Robotics in education. Advances in intelligent systems and computing (Vol. 457, pp. 233–244). Cham: Springer.

    Google Scholar 

  • Polishuk, A., Verner, I., Klein, Y., Inbar, E., Mir, R., & Wertheim, I. (2012). The challenge of robotics education in science museums. International Journal of Robots, Education and Art (IJREA), 2(1), 30–37.

    Article  Google Scholar 

  • Rusk, N., Resnick, M., Berg, R., & Pezalla-Granlund, M. (2008). New pathways into robotics: Strategies for broadening participation. Journal of Science Education and Technology, 17(1), 59–69.

    Article  Google Scholar 

  • Ryu, G. J., Kang, J. B., Kim, C. G., & Song, B. S. (2013). Development of a robot remote support system for student with health impairment. In Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology (p. 24). Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre.

    Google Scholar 

  • Sahin, A., Ayar, M. C., & Adiguzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 309–322.

    Google Scholar 

  • Scaradozzi, D., Cesaretti, L., Screpanti, L., Costa, D., Zingaretti, S., & Valzano, M. (in press). Innovative tools for teaching marine robotics, iot and control strategies since the primary school. In: Daniela, L. (Ed.), Smart learning with educational robotics – using robots to scaffold learning outcomes, Springer. ISBN 978-3-030-19912-8.

    Google Scholar 

  • Scaradozzi, D., Sorbi, L., Pedale, A., Valzano, M., & Vergine, C. (2015). Teaching robotics at the primary school: An innovative approach. Procedia-Social and Behavioral Sciences, 174, 3838–3846.

    Article  Google Scholar 

  • Scaradozzi, D., Screpanti, L., Cesaretti, L., Mazzieri, E., Storti, M., Brandoni, M., & Longhi, A. (2016). Rethink Loreto: We build our smart city!” A stem education experience for introducing smart city concept with the educational robotics. In 9th annual international conference of education, research and innovation (ICERI 2016), Seville, Spain (pp. 750–758).

    Google Scholar 

  • Scaradozzi, D., Screpanti, L., Cesaretti, L., Storti, M., & Mazzieri, E. (2018). Implementation and assessment methodologies of teachers’ training courses for STEM activities. Technology, Knowledge and Learning, 1–21.

    Google Scholar 

  • Screpanti, L., Cesaretti, L., Storti, M., Mazzieri, E., & Longhi, A. (2018a). Advancing K12 education through Educational Robotics to shape the citizens of the future. In Proceedings of DIDAMATICA 2018. AICA.

    Google Scholar 

  • Screpanti, L., Cesaretti, L., Marchetti, L., Baione, A., Natalucci, I. N., & Scaradozzi, D. (2018b, July). An educational robotics activity to promote gender equality in STEM education. In Procedings of the eighteenth International Conference on Information, Communication Technologies in Education (ICICTE 2018) (pp. 336–346). Chania, Crete, Greece.

    Google Scholar 

  • Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 45(3), 373–394.

    Article  Google Scholar 

  • Tapus, A., Peca, A., Aly, A., Pop, C., Jisa, L., Pintea, S., Rusu, A., & David, D. O. (2012). Children with autism social engagement in interaction with Nao, an imitative robot: A series of single case experiments. Interaction Studies, 13(3), 315–347.

    Article  Google Scholar 

  • Tocháček, D., Lapeš, J., & Fuglík, V. (2016). Developing technological knowledge and programming skills of secondary schools students through the educational robotics projects. Procedia-Social and Behavioral Sciences, 217, 377–381.

    Article  Google Scholar 

  • Toh, E., Poh, L., Causo, A., Tzuo, P. W., Chen, I., & Yeo, S. H. (2016). A review on the use of robots in education and young children. Journal of Educational Technology & Society, 19(2).

    Google Scholar 

  • Turkle, S., & Papert, S. (1992). Epistemological pluralism and the revaluation of the concrete. Journal of Mathematical Behavior, 11(1), 3–33.

    Google Scholar 

  • Vitale, G., Bonarini, A., Matteucci, M., & Bascetta, L. (2016). Toward vocational robotics: An experience in post-secondary school education and job training through robotics. IEEE Robotics & Automation Magazine, 23(4), 73–81.

    Article  Google Scholar 

  • Vygotsky, L. S. (1968). Thought and language. Cambridge, MA: M.I.T. Press.

    Google Scholar 

  • Weinberg, J. B., Pettibone, J. C., Thomas, S. L., Stephen, M. L., & Stein, C. (2007). The impact of robot projects on girls’ attitudes toward science and engineering. In Workshop on research in robots for education (Vol. 3, pp. 1–5).

    Google Scholar 

  • West, J., Vadiee, N., Sutherland, E., Kaye, B., & Baker, K. (2018). Making STEM accessible and effective through NASA robotics programs. Tribal College Journal of American Indian Higher Education, 29(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Scaradozzi .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3.1 Results from the classification proposed in Section 1
Table 3.2 Results from the classification proposed in Section 2
Table 3.3 Results from the classification of evaluation proposed in Section 3

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scaradozzi, D., Screpanti, L., Cesaretti, L. (2019). Towards a Definition of Educational Robotics: A Classification of Tools, Experiences and Assessments. In: Daniela, L. (eds) Smart Learning with Educational Robotics. Springer, Cham. https://doi.org/10.1007/978-3-030-19913-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19913-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19912-8

  • Online ISBN: 978-3-030-19913-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics