Skip to main content

The Mouse Hypothalamus

  • Chapter
  • First Online:
Neuroanatomy of the Mouse

Abstract

Although there is a cerebrocortical representation of visceral activity (see Chap. 10), the hypothalamus with the pituitary gland is the main player in sustaining the milieu intérieur or interior milieu, as described in by Claude Bernard in the nineteenth century. This task is realized by the hierarchically highest control of physiological parameter like blood pressure, heart action, breathing, sweating (temperature regulation), gastrointestinal activity, and reproduction. By means of superordinate endocrine structures in the hypothalamus via the pituitary gland, the activity of peripheral endocrine glands like the thyroid gland, the suprarenal gland, ovaries, and testes is regulated via vascular feedback mechanisms. Other hormones secreted in the pituitary gland are involved in renal function (vasopressin), uterus contraction and postnatal binding behavior (oxytocin), growth (growth hormone), skin pigmentation (α-MSH), and mammary gland function (prolactin). As such the whole control of the visceral system is controlled by the hypothalamus either via neuronal connections or releasing/inhibiting factors and hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson EE, Moore RY (2001a) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Abrahamson EE, Moore RY (2001b) The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res 889:1–22. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Bolado G, Celio MR (2016) The ventrolateral hypothalamic area and the parvafox nucleus: role in the expression of (positive) emotions? J Comp Neurol 524:1616–1623. [Pvalb-Cre, Foxb1-Cre]

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Bolado G, Zhou X et al (2000) Winged helix transcription factor Foxb1 is essential for access of mammillothalamic axons to the thalamus. Development 127:1029–1038. [Foxb1−/− on 129SvPas mice background]

    CAS  PubMed  Google Scholar 

  • Ammari R, Lopez C et al (2010) Subthalamic nucleus evokes similar long lasting glutamatergic excitations in pallidal, entopeduncular and nigral neurons in the basal ganglia slice. Neuroscience 166:808–818. [C57/BL6]

    Article  CAS  PubMed  Google Scholar 

  • Bab I, Hajbi-Yonissi C, Gabet Y, Müller R (2007) Microtomographic atlas of the mouse skeleton. Springer, New York. [C57BL/6 SJL, C3H]

    Book  Google Scholar 

  • Baker BL, Gross DS (1978) Cytology and distribution of secretory cell types in the mouse hypophysis as demonstrated with immunocytochemistry. Am J Anat 153:193–215. [Swiss Webster mice]

    Article  CAS  PubMed  Google Scholar 

  • Baronio D, Gonchoroski T et al (2014) Histaminergic system in brain disorders: lessons from the translational approach and future perspectives. Ann General Psychiatry 13:34

    Article  Google Scholar 

  • Becker H (1955) Hypophyse und Hypothalamus bei der weißen Maus. Zugleich ein Beitrag zur Standortbestimmung der Maus in der Säugetierreihe. Dtsch Z Nervenheilk 173:123–160. [white mouse]

    CAS  Google Scholar 

  • Behringer RR, Mathews LS et al (1988) Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 2:453–461. [rGH-DT-A transgenic mice and non-expressing littermate]

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko E, Beig MI et al (2015) Blockade of the dorsomedial hypothalamus and the perifornical area inhibits respiratory responses to arousing and stressful stimuli. Am J Physiol Regul Integr Comp Physiol 308:R816–R822. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Broadwell RD, Bleier R (1976) A cytoarchitectonic atlas of the mouse hypothalamus. J Comp Neurol 167:315–340. [albino mice]

    Article  CAS  PubMed  Google Scholar 

  • Brooks LR, Chung WCJ et al (2010) Abnormal hypothalamic oxytocin system in fibroblast growth factor 8-deficient mice. Endocrinology 38:174–180. [FGF8 hypomorphic mice (129p2/OlaHsd∗ CD-1]

    CAS  Google Scholar 

  • Camper S, Suh H, Raetzman L, Douglas K, Cushman L, Nasonkin I, Burrows H, Gage P, Martin D (2002) Pituitary gland development. In: Rossant J, Tam PPL (eds) Mouse development. Elsevier: Amsterdam, pp 499–518

    Google Scholar 

  • Caruso V, Lagerström MC et al (2014) Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 15:98–110

    Article  CAS  PubMed  Google Scholar 

  • Çavdar S, Onat F et al (2001) The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 198:463–472. [rat]

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi Y-H, Fujikawa T et al (2013) Revisiting the ventral medial nucleus of the hypo-thalamus: the roles of SF-1 neurons in energy homeostasis. Front Neurosci 7:71. [SF-1−/−]

    PubMed  PubMed Central  Google Scholar 

  • Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphisms and projections to gonadotropin-releasing hormone neurons. Endocrinology 147:5817–5858. [C57BL/6J GhRH-GFP mice]

    Article  CAS  PubMed  Google Scholar 

  • Clemmons DR (2012) Metabolic actions of IGF-I in normal physiology and diabetes. Endocrinol Metab Clin North Am 41:425–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crestani CC, Alves FHF et al (2013) Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 11:141–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley WR, Terry LC (1980) Biochemical mapping of somatostatinergic systems in rat brain: effects of periventricular hypothalamic and medial basal amygdaloid lesions on somatostatin-like immunoreactivity in discrete brain nuclei. Brain Res 200:283–291. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Gerfen CR et al (2013) Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol 521:1844–1866. [C57BL/6]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov EL, Yanagawa Y et al (2013) Forebrain GABAergic projections to locus coeruleus in mouse. J Comp Neurol 521:2373–2397. [C57Bl/6J, GAD67-GFP (Δneo) knock-in mice, VGAT-iCre/LSGFP mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper S, Kirigiti M et al (2010) Differential gene expression between neuropeptide Y expressing neurons of the dorsomedial nucleus of the hypothalamus and the arcuate nucleus: microarray analysis study. Brain Res 1350:139–150. [NPY hrGFP mice on a C57BL6 background]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eknoyan G (2010) A history of diabetes insipidus: paving the road to internal water balance. Am J Kidney Dis 56:1175–1183

    Article  PubMed  Google Scholar 

  • Fauquier T, Rizzoti K et al (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 105:2907–2912. [MF1 mice]

    Article  PubMed  PubMed Central  Google Scholar 

  • Fink G, Pfaff D, Levine J (eds) (2012) Handbook of neuroendocrinology. Elsevier, Saint Louis

    Google Scholar 

  • Fink-Jensen A, Møller M (1990) Direct projections from the anterior and tuberal regions of the lateral hypothalamus to the rostral part of the pineal complex of the rat. An anterograde neuron-tracing study by using Phaseolus vulgaris leucoagglutinin. Brain Res 522:337–341. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Gautron L, Cravo RM et al (2013) Discrete melanocortin-sensitive neuroanatomical pathway linking the ventral premamillary nucleus to the paraventricular hypothalamus. Neuroscience 240:70–82. [C57BL/6, MC4-R-GFP]

    Article  CAS  PubMed  Google Scholar 

  • Goldberg LB, Aujla PK et al (2011) Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev Biol 358:23–32. [mouse model with persistent expression of the activated Notch1 intracellular domain (NICD) in POMC-expressing cells]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagan CE, Bolon B, Keene CD (2007) Nervous system. In: Treuting PM, Dintzis SM (eds) Comparative anatomy and histology. A mouse and human atlas. Academic Press, Oxford, pp 381–384. [C57BL/6]

    Google Scholar 

  • Hahn JD, Swanson LW (2010) Distinct patterns of neural inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64:14–103. [rat]

    Article  PubMed  PubMed Central  Google Scholar 

  • Huggenberger S, Moser N, Schröder H et al (2019) Neuroanatomie des Menschen. Springer

    Google Scholar 

  • Jennings JH, Rizzi G et al (2013) The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341:1517–1521. [Several transgenic mouse lines]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaas JH (ed) (2009) Evolutionary neuroscience, Oxford, Academic Press

    Google Scholar 

  • Kaufman M, Nikitin AY, Sundberg JP (2010) Histologic basis of mouse endocrine system development: a comparative analysis. CRC Press, Boca Raton

    Google Scholar 

  • Kittel B, Ruehl-Fehlert C et al (2004) Revised guides for organ sampling and trimming in rats and mice – Part 2. Exp Toxicol Pathol 55:413–431. [mice, rats]

    Article  PubMed  Google Scholar 

  • Lindberg D, Chen P et al (2013) Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol 521:3167–3190. [Transgenic mice expressing Cre in SF1 neurons (SF1-Cre) (FVB-Tg(Nr5a1-cre)2Low/J transgenic reporter mice expressing Cre-regulated enhanced yellow fluorescent protein (EYFP) under the control of the ROSA26 promoter (R26-stop-EYFP) (B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J]

    Article  CAS  PubMed  Google Scholar 

  • Luiten PGM, terHorst GJ et al (1987) The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 329:374–378. (1985) [rat]

    Article  Google Scholar 

  • Makarenko IG, Ugrymov MV et al (2002) Involvement of accessory neurosecretory nuclei in the formation of hypothalamohypophysial system during prenatal and postnatal development in rats. Russ J Dev Biol 33:37–42. [rat]

    Article  Google Scholar 

  • Martines EV, Reggiani PC et al (2011) Thymulin gene therapy prevents the histomorphometric changes induced by thymulin deficiency in the thyrotrope population of mice. Cells Tissues Organs 194:67–75. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Mieda M, Okamoto H et al (2006) Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr Biol 26:2535–2542. [Avp-CK1δ-/- mice]

    Google Scholar 

  • Miyata S, Hatton GI (2002) Activity-related, dynamic neuron-glial interactions in the hypothalamo-neurohypohysial system. Microsc Res Tech 56:143–157

    Article  CAS  PubMed  Google Scholar 

  • Miyata S, Takamatsu H et al (2001) Plasticity of neurohypohysial terminals with increased hormonal release during dehydration: ultrastructural and biochemical analyses. J Comp Neurol 343:413–427. [rat]

    Article  Google Scholar 

  • Morales-Delgado N, Merchan P et al (2011) Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus. Front Neuroanat 5:10. [Swiss albino mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Delgado N, Castro-Robles B et al (2014) Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct Funct 219:1083–1111. [Swiss albino mouse, Otp−/− C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Morawietz G, Ruehl-Fehlert C et al (2004) Revised guides for organ sampling and trimming in rats and mice – Part 3. Exp Toxicol Pathol 55:433–449. [mice, rats]

    Article  PubMed  Google Scholar 

  • Morita S, Miyata S (2012) Different vascular permeability between the sensory and secretory circumventricular organs of the adult mouse brain. Cell Tissue Res 349:589–603. [C57BL/6J]

    Article  PubMed  Google Scholar 

  • Morton GJ, Schwartz MW (2011) Leptin and the CNS control of glucose metabolism. Physiol Rev 91:389–411

    Article  CAS  PubMed  Google Scholar 

  • Nagaishi VS, Cardinali LI et al (2014) Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience 259:71–83. [LepR-reporter mouse to visualize LepR-expressing cells with the tdTomato fluorescent protein]

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Takemura M et al (1993) Loss of large neurons and occurrence of neurofibrillary tangles in the tuberomammillary nucleus of patients with Alzheimer’s disease. Neurosci Lett 151:196–199. [man]

    Article  CAS  PubMed  Google Scholar 

  • Pardo-Bellver C, Cádiz-Moretti B et al (2012) Differential efferent projections of the anterior, posteroventral, and posterolateral subdivisions of the medial amygdala in mice. Front Neuroanat 6:33. [C57BL/J6, CD1]

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Franklin K (2012) Paxinos and Franklins the mouse brain in stereotaxic coordinates, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, Amsterdam

    Google Scholar 

  • Petrof I, Sherman S (2009) Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J Neurosci 29:7815–7819. [BALB/c]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles L (2009) Forebrain development: prosomere model. In: Lemke G (ed) Developmental neurobiology. Academic Press, London, pp 315–319

    Google Scholar 

  • Puelles L (2013) Plan of the developing vertebrate nervous system. In: Rubenstein JLR, Rakic P (eds) Comprehensive developmental neuroscience: patterning and cell type specification in the developing CNS and PNS, vol 1. Elsevier, Amsterdam, pp 187–209

    Chapter  Google Scholar 

  • Ramon y Cajal S (2002) Histologie du système nerveux de l’homme et des vertébrés/texture of the nervous system of man and the vertebrates, vol 3. Springer, translated and edited by Pedro and Tauba Pasik

    Google Scholar 

  • Robbe D, Alonso G et al (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 21:109–116. [C57BL/6]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rood BD, Stott RT et al (2012) Site or origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol 521:2321–2358. [mouse]

    Article  CAS  Google Scholar 

  • Rossant J, Tam PPL (eds) (2002) Mouse development. Patterning, morphogenesis and organogenesis. Academic Press, San Diego

    Google Scholar 

  • Rozov SV, Zant JC et al (2014) Periodic properties of the histaminergic system of the mouse brain. Eur J Neurosci 39:218–228. [C57BL/6J, CBA/J mouse]

    Article  PubMed  Google Scholar 

  • Ruehl-Fehlert C, Kittel B et al (2003) Revised guides for organ sampling and trimming in rats and mice – Part 1. Exp Toxicol Pathol 55:91–106. [mice, rats]

    Article  PubMed  Google Scholar 

  • Sakai K (2014) Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice. Neuroscience 260:249–264. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Takahashi K et al (2010) Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front Behav Neurosci 4:53. [C57BL/6, Histidine decarboxylase knock-out mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano H, Yokoi M (2007) Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci 27:6948–6955. [Several transgenic mouse lines]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuff KG, Hentges ST et al (2002) Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and –independent mechanisms. J Clin Invest 110:973–981. [Drd2−/− and Prlr−/−]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz MD, Nunez AA et al (2004) Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127:13–23. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Shabel SJ, Proulx CD (2014) Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345:1494–1498. [Several transgenic mouse lines]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimogori T, Lee DA et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13:757–776. [C57Bl/6 and CD-1]

    Article  CAS  Google Scholar 

  • Sturrock RR (1991) Stability of neuron number in the subthalamic and entopeduncular nuclei of the aging mouse brain. J Anat 179:67–73. [ASH/TO mice]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tosini G, Owino S et al (2014) Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. BioEssays 36:778–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehr R, Mansouri A et al (1997) Fkh5-deficient mice show dysgenesis in the caudal midbrain and hypothalamic mammillary body. Development 124:4447–4456. [Fkh5−/− mice]

    CAS  PubMed  Google Scholar 

  • Weiner IB, Craighead WE (2010) The Corsini encyclopedia of psychology. Wiley, Hoboken

    Book  Google Scholar 

  • Yamazaki F, Møller M et al (2015) The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Struct Funct 220:1497–1509. [Lhx9−/− on C57BL/6 background, rat]

    Article  CAS  PubMed  Google Scholar 

  • Zeiss CJ (2005) Neuroanatomical phenotyping in the mouse: the dopaminergic system. Vet Pathol 42:753–773. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Zeki S (2007) The neurobiology of love. FEBS Lett 581:2575–2579. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gleiberman AS et al (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963. [mouse]

    Article  CAS  PubMed  Google Scholar 

  • http://braininfo.rprc.washington.edu

  • http://fipat.library.dal.ca/wp-content/uploads/2017/02/FIPAT-TNA-Ch1.pdf

  • http://www.informatics.jax.org/silver/frames/frame4-4.shtml

  • http://www.nature.com/subjects/slow-wave-sleep

  • http://www.ncbi.nlm.nih.gov/probe/docs/techish/

  • http://www.nigms.nih.gov/education/Pages/Factsheet_CircadianRhythms.aspx

  • http://stainsfile.info/StainsFile/prepare/fix/fixatives/susa.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannsjörg Schröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, H., Moser, N., Huggenberger, S. (2020). The Mouse Hypothalamus. In: Neuroanatomy of the Mouse. Springer, Cham. https://doi.org/10.1007/978-3-030-19898-5_9

Download citation

Publish with us

Policies and ethics