Skip to main content

The Mouse Cerebellum

  • Chapter
  • First Online:
Neuroanatomy of the Mouse

Abstract

The cerebellum is an important structure for the coordination and regulation of motor actions. Macroscopically it can be subdivided into the midline vermis and the lateral hemispheres. It disposes of a cortex of three layers (granular layer, Purkinje cell layer, and molecular layer) and an extended white matter (the so-called arbor vitae because it appears as a treelike structure). The latter harbors the cerebellar nuclei, the output structures of the cerebellum to other parts of the brain. The main cerebellar targets are the motor nuclei of the thalamus and the mesencephalic red nucleus. The main direct input to the cerebellum originates in the precerebellar nuclei reaching the Purkinje cells of the cerebellum either directly via the climbing fibers from the inferior olivary complex or via the mossy fibers from a number of other nuclei, predominantly the pontine nuclei. There is a cortico-cerebello-cortical loop starting in the cerebral cortex running to the pontine nuclei and from there to the cerebellum. The cerebellar Purkinje cells contact the cerebellar nuclei which via the dentato-rubro-thalamic tract target the motor thalamic nuclei. These close the loop via thalamocortical connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ango F, Wu C et al (2008) Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLoS Biol 6:e103. [Several transgenic mouse lines]

    Article  Google Scholar 

  • Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152. [C57BL/6]

    Article  CAS  Google Scholar 

  • Bruchhage MMK, Bucci MP et al (2018) Cerebellar involvement in autism and ADHD. Handb Clin Neurol 155:61–72

    Article  Google Scholar 

  • Cesana E, Pietrajtis K et al (2013) Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. J Neurosci 33:12430–12446. [rat]

    Article  CAS  Google Scholar 

  • Chaumont J, Guyon N et al (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 110:16223–16228. [L7-ChR2-eYFP Mice]

    Article  CAS  Google Scholar 

  • Cheng FY, Fleming JT et al (2018) Bergmann glial sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture. Dev Biol 440:152–166. [Several transgenic mouse lines]

    Article  CAS  Google Scholar 

  • D’Angelo E, Solina S et al (2013) The cerebellar Golgi cell and spatiotermporal organization of granular layer activity. Front Neural Circuits 7:93

    PubMed  Google Scholar 

  • Fahrion JK, Komuro Y et al (2013) Chapter 11: Cerebellar patterning. In: Rubinstein J, Rakic P (eds) Patterning and cell type specification in the developing CNS and PNS: comprehensive developmental neuroscience. Academic Press, Amsterdam

    Google Scholar 

  • Fink AJ, Englund C et al (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076. [B6]

    Article  CAS  Google Scholar 

  • Fu Y, Tvrdik P et al (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-Cre genetic Labeling. Cerebellum 10:570–584. [C57BL/6]

    Article  Google Scholar 

  • Galliano E, Baratella M et al (2013) Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Front Neural Circuits 7:59. [C57BL/6, GlyT2-EGFP]

    Article  Google Scholar 

  • Gilthorpe JD, Papantoniou E-K et al (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728. [Chick]

    CAS  PubMed  Google Scholar 

  • Haines DE, Olry R (2003) If there are “deep” cerebellar nuclei, where are the “superficial” ones? J Hist Neurosci 12:203–205

    Article  Google Scholar 

  • Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13:1233–1239. [Several transgenic mouse lines]

    Article  CAS  Google Scholar 

  • Huggenberger S, Moser N et al (2019) Neuroanatomie des Menschen. Springer

    Google Scholar 

  • Inouye M, Oda SI (1980) Strain-specific variations in the folial pattern of the mouse cerebellum. J Comp Neurol 15:357–362. [13 different inbred mouse strains]

    Article  Google Scholar 

  • Klintworth GK (1968) The comparative anatomy and phylogeny of the tentorium cerebelli. Anat Rec 160:635–642. [mouse]

    Article  CAS  Google Scholar 

  • Lugaro E (1894) Sulle connessioni tra gli elementi nervosi della corteccia cerebellare con considerazioni generali sul significato fisiologico dei rapporti tra gli elementi nervosi. Riv Sper Fren Med Leg 20:297–331

    Google Scholar 

  • Millonig JH, Millen KJ et al (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769. [Heterozygous DreherJ]

    Article  CAS  Google Scholar 

  • Mugnaini E, Diño MR et al (1997) The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Prog Brain Res 114:131–150

    Article  CAS  Google Scholar 

  • Nishiyama H, Linden DJ (2007) Pure spillover transmission between neurons. Nat Neurosci 10:675–677

    Article  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392. [mouse]

    Article  CAS  Google Scholar 

  • Paxinos G, Franklin KB (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Elsevier/Academic Press, Amsterdam. [C57BL/6]

    Google Scholar 

  • Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, Amsterdam

    Google Scholar 

  • Ramón y Cajal S (2000) Texture of the nervous system of man and the vertebrates, vol II. Translated and edited by P. Pasik and T. Pasik. Springer

    Google Scholar 

  • Schilling K, Oberdick J et al (2008) Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 130:601–615

    Article  CAS  Google Scholar 

  • Sillitoe RV, George-Jones NA et al (2014) Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Struct Funct 219:35–47. [Lmx1a dr-J /Lmx1a dr-J = dreher + wildtype]

    Article  Google Scholar 

  • Simat M, Parpan F et al (2007) Heterogeneity of glycinergic and Gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83. [GlyT2-GFP and GAD67-GFP on C57Bl6/J background]

    Article  CAS  Google Scholar 

  • Southan AP, Robertson B (1998) Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels. J Neurosci 18:948–955. [TO mice]

    Article  CAS  Google Scholar 

  • Sudarov A, Joyner AL (2007) Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2:26. [SW]

    Article  Google Scholar 

  • Thomanetz V, Angliker N et al (2013) Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201:293–208. [Several transgenic mouse lines]

    Article  CAS  Google Scholar 

  • Tlamsa AP, Brumberg JC (2010) Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosens Mot Res 27:34–43. [CD1]

    Article  Google Scholar 

  • Ullmann JF, Keller MD et al (2012) Segmentation of the C57BL/6J mouse cerebellum in magnetic resonance images. Neuroimage 62:1408–1414. [C57BL/6J]

    Article  Google Scholar 

  • Uusissari M, Knöpfel T (2011) Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum 10:637–646. [mouse]

    Article  Google Scholar 

  • Van Dorp S, De Zeeuw CI (2015) Forward signalling by unipolar brush cells in the mouse cerebellum. Cerebellum 14:258–533. [C57BL/6]

    Google Scholar 

  • Van Essen D (2002) Surface-based atlases of cerebellar cortex in the human, macaque and mouse. Ann N Y Acad Sci 978:468–479. [mouse]

    Article  Google Scholar 

  • Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 39:821–829. [GFP+/+/mGluR2−/−]

    Article  CAS  Google Scholar 

  • White JJ, Sillitoe RV (2013) Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol 2:149–164. [mouse]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannsjörg Schröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, H., Moser, N., Huggenberger, S. (2020). The Mouse Cerebellum. In: Neuroanatomy of the Mouse. Springer, Cham. https://doi.org/10.1007/978-3-030-19898-5_7

Download citation

Publish with us

Policies and ethics