Skip to main content

The Mouse Amygdaloid Body

  • Chapter
  • First Online:
Neuroanatomy of the Mouse

Abstract

The amygdaloid body is an extended group of telencephalic subnuclei of pallial and subpallial origin located in the ventral telencephalon. It gets input from all main sensory and motor structures. The amygdala is involved in the processing of emotional and cognitive behavior. The bilateral loss of the amygdala (Klüver-Bucy syndrome) in man results in marked behavioral changes including visual agnosia, hypersexuality, hyperorality, a tendency to react to every visual stimulus, and memory deficits resembling strongly the symptoms which occurred in monkeys after bilateral amygdalectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa H, Sato Y et al (2004) Development of the amygdalohypothalamic projection in the mouse embryonic forebrain. Anat Embryol 208:249–264. [mouse]

    Article  CAS  Google Scholar 

  • Barger N, Hanson KL et al (2014) Evidence for evolutionary specialization in human limbic structures. Front Hum Neurosci 8:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Broca P (1878) Les circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans la série de Mammifères. Revue d’Anthropol. 2ième série 1:384–498

    Google Scholar 

  • Cádiz-Moretti B, Abellán-Álvaro M et al (2016a) Afferent and efferent connections of the cortex-amygdala transition zone in mice. Front Neuroanat 10:125. [CD1]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cádiz-Moretti B, Otero-Garcia M et al (2016b) Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study. Brain Struct Funct 221:1033–1065. [CD1]

    Article  PubMed  Google Scholar 

  • Cádiz-Moretti B, Abellán-Álvaro M et al (2017) Afferent and efferent projections of the anterior amygdaloid nucleus in the mouse. J Comp Neurol 525:2929–2954. [CD1]

    Article  PubMed  CAS  Google Scholar 

  • Corder G, Ahanonu B et al (2019) An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363:276–281. [C57Bl/6J and several transgenic mouse lines]

    Article  CAS  PubMed  Google Scholar 

  • Crestani CC, Alves FH et al (2013) Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 11:141–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everitt BJ, Parkinson JA et al (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    Article  CAS  PubMed  Google Scholar 

  • George F, Koob GF, Everitt BJ, Robbins TW (2013) Fundamental neuroscience, 4th edn. Elsevier-Academic Press, Amsterdam/Boston/Paris

    Google Scholar 

  • Götz J, Chen F et al (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Abeta42 fibrils. Science 293:1491–1149. [P301L/pR5 mouse]

    Article  PubMed  Google Scholar 

  • Han W, Tellez LA et al (2017) Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168:311–324. [C57BL/6J, Slc32a1tm2(cre)Lowl/J, Slc17a6tm2(cre)Lowl/J, Slc32a1tm1Lowl/J, B6;129S6-Chattm2(cre)Lowl/J, B6;129P2-Gt(ROSA)26Sortm1(CAG-RABVgp4,-TVA)Arenk/J]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy J (2017) The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J 284:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Hayman LA, Rexer JL et al (1998) Klüver-Bucy syndrome after bilateral selective damage of amygdala and its cortical connections. J Neuropsychiatry Clin Neurosci 10:354–358

    Article  CAS  PubMed  Google Scholar 

  • Hintiryan H, Gou L et al (2012) Comprehensive connectivity of the mouse main olfactory bulb: analysis and online digital atlas. Front Neuroanat 6:30. [C57Bl/6J]

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou W-H, Kuo N et al (2016) Wiring specificity and synaptic diversity in the mouse lateral central amygdala. J Neurosci 36:4549–4563. [Som-IRES-cre mice and AiI4 reporter mice bred onto C57BL/6J background]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huggenberger S, Moser N, Schröder H et al (2019) Neuroanatomie des Menschen. Springer

    Google Scholar 

  • Iwaki T, Yamashita H, Hayakawa T (2001) A color atlas of sectional anatomy of the mouse. Adthree Publishing, Tokyo. [ddY and ICR]

    Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Article  Google Scholar 

  • Keifer OP Jr, Hurt RC et al (2015) The physiology of fear: reconceptualizing the role of the central amygdala in fear learning. Physiology 30:389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WB, Cho J-H (2017) Encoding of discriminative fear memory by input-specific LTP in the amygdala. Neuron 95:1129–1146.e5. [Several transgenic mouse lines]

    Article  CAS  PubMed  Google Scholar 

  • Klüver H, Bucy PC (1937) “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am J Phys 119:352–353

    Google Scholar 

  • Kondoh K, Lu Z et al (2016) A specific area of olfactory cortex involved in stress hormone responses to predator odors. Nature 532:103–106. [C57BL/6J wild type mice, Emx1-ires-Cre and Vglut2-ires-Cre knock-in mice, Rosa-floxstop-GFP reporter mice, CRH-ires-Cre mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon J-T, Nakajima R et al (2014) Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory. Learn Mem 21:627–633. [129/C57Bl/6 hybrid background mice]

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Mathis A et al (2017) Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171:1176–1190. [C57BL/6J, Vgat-ires-Cre, Vglut2-ires Cre]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogenson GJ, Jones DL et al (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  CAS  PubMed  Google Scholar 

  • Mozhui K, Hamre KM et al (2007) Genetic and structural analysis of the basolateral amygdala complex in BXD recombinant inbred mice. Behav Genet 37:223–243. [35 BXD recombinant inbred (RI) lines, the parental strains (C57BL/6J and DBA/2J) and F1 hybrids]

    Article  PubMed  Google Scholar 

  • Müller M, Faber-Zuschratter H et al (2012) Synaptology of ventral CA1 and subiculum projections to the basomedial nucleus of the amygdala in the mouse: relation to GABAergic interneurons. Brain Struct Funct 217:5–17. [GAD67-GFP knock-in mice]

    Article  PubMed  CAS  Google Scholar 

  • Novejarque A, Gutiérrez-Castellanos N et al (2011) Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Front Neuroanat 5:54. [C57BL/6, CD1]

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardo-Bellver C, Cádiz-Moretti B et al (2012) Differential efferent projections of the anterior, posteroventral, and posterolateral subdivisions of the medial amygdala in mice. Front Neuroanat 6:33. [C57BL/J6, CD1]

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, Amsterdam

    Google Scholar 

  • Pennanen L, Welzl H et al (2004) Accelerated extinction of conditioned taste aversion in P301L tau transgenic mice. Neurobiol Dis 15:500–509

    Article  CAS  PubMed  Google Scholar 

  • Pennanen L, Wolfer DP et al (2006) Impaired spatial reference memory and increased exploratory behavior in P301L tau transgenic mice. Genes Brain Behav 5:369–379

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein JJLR, Rakic P (eds) (2013) Patterning and cell type specification. Developing CNS and PNS, vol 1, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  • Sato Y, Hirata T et al (1998) Requirement for early-generated neurons recognized by monoclonal antibody lot1 in the formation of lateral olfactory tract. J Neurosci 18:7800–7810. [ICR]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley MT, Adamek GD (1984) The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res Bull 12:669–688. [BALB-C]

    Article  CAS  PubMed  Google Scholar 

  • Shumyatsky GP, Tsvetkov E et al (2002) Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111:905–918. [GRPR knockout mice on C57BL/6J background]

    Article  CAS  PubMed  Google Scholar 

  • Soma M, Aizawa H et al (2009) Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 513:113–128. [ICR]

    Article  CAS  PubMed  Google Scholar 

  • Stanek E IV, Cheng S et al (2014) Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 3:e02511. [Knock-in mouse line containing CAG-loxP-STOP-loxP-rabies-G-IRES-TVA at the Rosa26 locus (RΦGT) crossed with a mouse line that expresses Cre recombinase under the control of the choline acetyltransferase (ChAT) gene]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talishinsky A, Rosen GD (2012) Systems genetics of the lateral septal nucleus in mouse: heritability, genetic control, and covariation with behavioral and morphological traits. PLoS One 7:e44236. [BXD RI strains and parentals]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokita K, Inoue T et al (2010) Subnuclear organization of parabrachial efferents to the thalamus, amygdala and lateral hypothalamus in C57BL/6J mice: a quantitative retrograde double labeling study. Neuroscience 171:351–365. [C57BL/6J]

    Article  CAS  PubMed  Google Scholar 

  • Usunoff KG, Schmitt O et al (2009) Efferent projections of the anterior and posterodorsal regions of the medial nucleus of the amygdala in the mouse. Cells Tissues Organs 190:256–285. [C57/BL6]

    Article  PubMed  Google Scholar 

  • Winn P (2001) Dictionary of biological psychology. Routledge, London

    Google Scholar 

  • http://braininfo.rprc.washington.edu

  • http://www.hms.harvard.edu/research/brain/atlas.html

  • http://www.indiana.edu/~p1013447/dictionary/pav_def.htm

  • https://www.jove.com/science-education/5208/murine-in-utero-electroporation

  • https://mouse.brain-map.org/

  • http://www.stereology.info/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannsjörg Schröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, H., Moser, N., Huggenberger, S. (2020). The Mouse Amygdaloid Body. In: Neuroanatomy of the Mouse. Springer, Cham. https://doi.org/10.1007/978-3-030-19898-5_12

Download citation

Publish with us

Policies and ethics