Skip to main content

Layers of Composite Nanomaterials as Prototype of a Tensoresistor Sensor

  • Conference paper
  • First Online:
Advanced Materials

Abstract

The layers of various materials are discussed. They include nanomaterials containing carbon nanotubes with tensoresistive properties. The investigated layers are divided into two groups: without (group I) and with carbon nanotubes (group II). From materials of group I, the most suitable for the manufacture of strain sensors for medical purposes is an elastomer with microchannels, filled with a conductive liquid. Such a strain sensor can detect small bends of parts of the human body with an error of 8%. In group II, carbon nanotubes, located between layers of natural rubber or between flexible layers of polydimethylsiloxane, showed acceptable values of strain sensitivity and maximum deformation of ~40 and ~500%, respectively. Based on layers (thickness ~0.5–1.5 μm) of biocompatible composite nanomaterials in bovine serum albumin or microcrystalline cellulose and carbon nanotubes (concentration ≤2 wt%), prototypes of deformation sensors (tensoresistors ) showed high positive characteristics. In particular, bipolar behavior, strain sensitivity ~160, small hysteresis (≤3%) after training cycles (deformation/deformation) more than 25 times, the possibility of applying an aqueous dispersion of nanomaterials to the human skin by the 3-D printer. Further improvement (in particular, an increase in the linear deformation region and a decrease in deformation, a decrease in hysteresis) of the parameters of composite nanomaterials in a matrix of biological materials and a filler made of carbon nanotubes will allow the use of deformation sensors , both non-invasive and invasive medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.hbm.ru/pic/pdf/1372416324.pdf

  2. X. Liang, S.A. Boppart, IEEE Trans. Biomed. Eng. 57(4), 953 (2010)

    Article  Google Scholar 

  3. J. Zhou, Y. Gu, P. Fei et al., Nano Lett. 8(9), 3035 (2008)

    Article  CAS  Google Scholar 

  4. X. Xiao, L.Y. Yuan, J.W. Zhong et al., Adv. Mater. 23, 5440 (2011)

    Article  CAS  Google Scholar 

  5. C. Mattmann, F. Clemens, G. Tröster, Sensors. 8(6) (2008)

    Article  CAS  Google Scholar 

  6. S. Tadakaluru, W. Thongsuwan, P. Singjai, Sensors. 14 (2014)

    Article  CAS  Google Scholar 

  7. Y. Menguc, Y.-L. Park, E. Martinez-Villalpando et al., in IEEE International Conference on Robotics and Automation, p. 5309, Karlsruhe, Germany, 6–10 May 2013

    Google Scholar 

  8. D. Jiang, EMSL Department of Microtechnology and Nanoscience (MC2). (Chalmers University of Technology, SE-412 96 Gothenburg, Sweden, 2015), p. 55

    Google Scholar 

  9. D. Jung, G.S. Lee, J. Sens. Sci. Technol. 22(5), 315 (2013)

    Article  Google Scholar 

  10. T. Yamada, Y. Hayamizi, Y. Yamamoto et al., Nat. Nanotechnol. 6, 296 (2011)

    Article  CAS  Google Scholar 

  11. Y. Liu, Q. Sheng, S. Muftu et al., Transducers, p. 1091. (Barcelona, Spain, 16–20 June 2013)

    Google Scholar 

  12. S.M. Vemuru, R. Wahi, S. Nagarajaiah, P.M. Ajayan, J. Strain Analysis. 44, 555 (2009)

    Article  Google Scholar 

  13. Y. Wang, L. Wang, T. Yang et al., Adv. Funct. Mater. 24, 4666 (2014)

    Article  CAS  Google Scholar 

  14. A. Mata, A.J. Fleischman, S. Roy, Biomed. Microdevices 7(4), 281 (2005)

    Article  CAS  Google Scholar 

  15. Q. Qin, Y. Zhu, ACS Nano 5(9), 7404 (2011)

    Article  CAS  Google Scholar 

  16. Q. Fan, Z. Qin, S. Gao et al., Carbon 50(11), 4085 (2012)

    Article  CAS  Google Scholar 

  17. A. Mata, A.J. Fleischman, S. Roy, Biomed. Microdevices 7, 281 (2005)

    Article  CAS  Google Scholar 

  18. J. Lu, M. Lu, A. Bermak, Y-K., in 7th IEEE Conference on Nanotechnology, p. 1240. (Hong Kong, China, 2–5 August 2007)

    Google Scholar 

  19. M. Amjadi, Y.J. Yoon, I. Park, Nanotechnology 26, 375501 (2015)

    Article  CAS  Google Scholar 

  20. K.F. Akhmadishina, I.I. Bobrinetskii, R.A. Ibragimov et al., Inorg. Mater. 50(1), 23 (2014)

    Article  CAS  Google Scholar 

  21. K. Grabowski1, P. Zbyrad, A. Wilmanski, T. Uhl, in 7th European Workshop on Structural Health Monitoring, vol. 1, p. 1768. (La Cite, Nantes, France, 8–11 July 2014)

    Google Scholar 

  22. B. Ashrafi, K. Laqua, Y. Martinez-Rubi, et al. in 31st Annual Technical Conference of the American Society for Composites. vol. 1, p. 307. (Williamsburg, Virginia, USA, 19–22 September 2016)

    Google Scholar 

  23. N. Hu, Y. Karube, M. Arai et al., Carbon 48, 680 (2010)

    Article  CAS  Google Scholar 

  24. G. Yin, N. Hu, Y. Karube et al., Compos. Mater. 45, 1315 (2011)

    Article  CAS  Google Scholar 

  25. N. Hu, T. Itoi, T. Akagi et al., Carbon 51, 202 (2013)

    Article  CAS  Google Scholar 

  26. L. Ichkitidze, V. Podgaetsky, S. Selishchev et al., Mater. Sci. Appl. 4(5A), 1 (2013)

    CAS  Google Scholar 

  27. L.P. Ichkitidze, V.M. Podgaetsky, A.S. Prihodko et al., Biomed. Eng. 47(2), 68 (2013)

    Article  Google Scholar 

  28. L. Weiwei, in FIU Electronic Theses and Dissertations. 2016, p. 3025

    Google Scholar 

  29. X. Li, C. Levy, Sens. Transducers J. 7(Special Issue), 5 (2009)

    Google Scholar 

  30. Yu. Liu, Electrical Engineering Dissertations, 2012, p. 156

    Google Scholar 

  31. A.A. Krechetov, Vestnik Mashinostroenia. 8, 50 (2015). (in Russia)

    Google Scholar 

  32. S-Z. Guo, K. Qiu, F. Meng et al., Adv. Mater. 1701218 (2017)

    Google Scholar 

  33. E. Andreoli, R. Suzuki, A.W. Orbaek et al., J. Mater. Chem. B. 2(29), 4740 (2014)

    Article  CAS  Google Scholar 

  34. E. Dillon, M.S. Bhutani, A.R. Barron, J. Mater. Chem. B. 1B, 1461 (2013)

    Article  CAS  Google Scholar 

  35. H. Kafa, J.T.W. Wang, N. Rubio et al., Biomaterials 53, 437 (2015)

    Article  CAS  Google Scholar 

  36. J. Liu, F. Appiax, O. Bibari et al., Nanotechnology 22(19), 195101 (2011)

    Article  CAS  Google Scholar 

  37. I. Bobrinetsky, A. Gerasimenko, L. Ichkitidze et al., Am. J. Tissue Eng. Stem Cell 1(1), 27 (2014)

    Google Scholar 

  38. N. Alegret, E. Santos, A. Rodriguez-Fortea et al., Chem. Phys. Lett. 525–526, 120 (2012)

    Article  CAS  Google Scholar 

  39. S.H. Lacerda, J. Semberova, K. Holada et al., ACS Nano 5(7), 5808 (2011)

    Article  CAS  Google Scholar 

  40. B.M. Mohamed, D. Movia, A. Knyazev et al., Sci. Rep. 3, 1124 (2013)

    Article  CAS  Google Scholar 

  41. B.L. Allen, G.P. Kotchey, Y. Chen et al., J. Am. Chem. Soc. 31, 17194 (2009)

    Article  CAS  Google Scholar 

  42. C. Farrera, K. Bhattacharya, B. Lazzaretto et al., Nanoscale 6, 6974 (2014)

    Article  CAS  Google Scholar 

  43. F.T. Andon, A.A. Kapralov, N. Yanamala et al., Small 9, 2721 (2013)

    Article  CAS  Google Scholar 

  44. J.M. Tan, P. Aruselvan, S. Fakurazi, et al., J. Nanomater. 2014, Article ID 917024 (2014)

    Google Scholar 

  45. Y. Zhang, Y. Bai, B. Yan, Drug Discovery Today 15(11/12), 429 (2010)

    Google Scholar 

  46. B.M. Mohamed, D. Movia, A. Knyazev et al., Sci. Rep. 3, 1241136 (2013)

    Google Scholar 

  47. H. Haniu, N. Saito, Y. Matsuda et al., Int. J. Nanomed. 9, 1979 (2014)

    Article  Google Scholar 

  48. AYu. Gerasimenko, A.A. Dedkova, L.P. Ichkitidze et al., Opt. Spectrosc. 115, 283 (2013)

    Article  CAS  Google Scholar 

  49. L.P. Ichkitidze, M.S. Savelev, E.A. Bubnova et al., Biomed. Eng. 49(1), 36 (2015)

    Article  Google Scholar 

  50. L.P. Ichkitidze, V.A. Petukhov, A.Y. Gerasimenko, V.M. Podgaetsky, S.V. Selischev, Patent RF, No. 2662060

    Google Scholar 

  51. http://www.amresco-inc.com/ALBUMIN-BOVINE-0332.cmsx

Download references

Acknowledgements

The study was carried out with the financial support of the Russian Foundation for Basic Research and the German research community in the framework of the research project No. 19-51-12005. The work was done with the involvement of the Center by the collective use of “Microsystem technology and electronic component base MIET” and the Center for Technological Initiative MIET “Sensory”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levan Ichkitidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ichkitidze, L. et al. (2019). Layers of Composite Nanomaterials as Prototype of a Tensoresistor Sensor. In: Parinov, I., Chang, SH., Kim, YH. (eds) Advanced Materials. Springer Proceedings in Physics, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-030-19894-7_40

Download citation

Publish with us

Policies and ethics