Skip to main content

Fine Particularities of Structure and Optical Properties of Lithium Niobate Crystals Grown from Boron Doped Charge with Different Genesis

  • Conference paper
  • First Online:
Book cover Advanced Materials

Abstract

This work demonstrates that nonmetal boron is absent in the crystal structure thus it structures the melt and has a significant influence on the structure and physical characteristics of lithium niobate crystals . At this LiNbO3:B crystals possess a structure uniformity (and it is higher than that of a congruent crystals) , their NbLi defects amount is close to the amount in stoichiometric crystals though a photorefractive effect of LiNbO3:B crystals is much lower than in stoichiometric crystals and the structure and an optical uniformity is higher in LiNbO3:B crystals .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Non-photorefractive cations do not change the charge in the crystals under an optical radiation (they do not provide extra electrons to the system) despite the photorefractive cations.

  2. 2.

    A band with frequency 630 cm−1 (А1(ТО)) is forbidden by the selection rules in the scattering geometry Y(ZX)Ȳ, it manifests in this geometry due to the photorefractive effect.

  3. 3.

    For [27], a low-intensity band with frequency 120 cm−1 may also correspond to a mode of a pseudoscalar type А2, forbidden by the selection rules for a point group С3v. This vibration may appear in a Raman spectrum due to a lowering in a local point symmetry of lithium niobate crystals from С3v to С3 due to О3 triangles turning because of impurities in real crystals [27].

References

  1. P. Gunter, J.-P. Huidnard, Photorefractive Materials and Their Applications, vol. 1 (Springer, Berlin, 2007), p. 2

    Google Scholar 

  2. S.C. Abrahams, Properties of Lithium Niobate (Pergamon, New York, 1989)

    Google Scholar 

  3. S.C. Abrahams, J.M. Reddy, J.L. Bernstein, J. Phys. Chem. Solids 27(6/7), 997 (1966)

    Article  CAS  Google Scholar 

  4. Yu.S. Kuzminov, Electro-optical and Nonlinear-optical Lithium Niobate Crystal (Nauka, Moscow, 1987). (in Russian)

    Google Scholar 

  5. N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectra, Polaritons (Nauka, Moscow, 2003). (in Russian)

    Google Scholar 

  6. T. Volk, M. Wohlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008)

    Google Scholar 

  7. M. Aillerie, P. Bourson, M. Mostefa, F. Abdi, M.D. Fontana, J. Phys. Conf. Ser. 416, 012001 (2013)

    Article  CAS  Google Scholar 

  8. N.V. Sidorov, M.N. Palatnikov, V.T. Kalinnikov, Influence of the Secondary Structure on Optical Properties of Ferroelectric Crystals of Lithium Niobate with Low Photorefractive Effect (Proc. KSC RAS. Chemistry and Materials, Apatity, 2015). (in Russian)

    Google Scholar 

  9. M.D. Fontana, P. Bourson, Appl. Phys. Rev. 2, 046002 (2015)

    Article  CAS  Google Scholar 

  10. N.V. Sidorov, O.Y. Pikoul, A.A. Kruk, N.A. Teplyakova, A.A. Yanichev, M.N. Palatnikov, Opt. Spectrosc. 118(2), 273 (2015)

    Google Scholar 

  11. A.A. Blistanov, V.M. Lyubchenko, A.N. Goryunova, Kristallographija 43(1), 86 (1998)

    CAS  Google Scholar 

  12. N.V. Sidorov, A.A. Yanichev, M.N. Palatnikov, A.A. Gabain, O.Y. Pikoul, Opt. Spectrosc. 117(1), 76 (2014)

    Article  CAS  Google Scholar 

  13. O.V. Makarova, M.N. Palatnikov, I.V. Biryukova, N.A. Teplyakova, N.V. Sidorov, Inorg. Mater. 54(1), 53 (2018)

    Article  Google Scholar 

  14. M.N. Palatnikov, I.V. Biryukova, O.V. Makarova, V.V. Efremov, O.E. Kravchenko, V.T. Kalinnikov, Obtaining and Properties of Lithium Niobate Crystals Grown from the Melt of Congruent Composition Doped by Boron (Proc. KSC RAS. Chemistry and Materials, Apatity, 2015). (in Russian)

    Google Scholar 

  15. M.N. Palatnikov, I.V. Biryukova, S.M. Masloboeva, O.V. Makarova, D.V. Manukovskaya, N.V. Sidorov, J. Cryst. Growth 386, 113 (2014)

    Article  CAS  Google Scholar 

  16. M.N. Palatnikov, I.V. Biryukova, S.M. Masloboeva, O.V. Makarova, O.E. Kravchenko, A.A. Yanichev, N.V. Sidorov, Inorg. Mater. 49(7), 765 (2013)

    Article  CAS  Google Scholar 

  17. S.M. Masloboeva, M.N. Palatnikov, L.G. Arutjunian, D.I. Ivanenko, Izv. Spb. Technol. Inst. 64(38), 34 (2017)

    Google Scholar 

  18. M.N. Palatnikov, N.V. Sidorov, V.T. Kalinnikov, Nonferr. Met. (10), 54 (2000)

    Google Scholar 

  19. M.N. Palatnikov, N.V. Sidorov, I.V. Biryukova, O.B. Shcherbina, V.T. Kalinnikov, Perspekt. Mater. (2), 93 (2011) (in Russian)

    Google Scholar 

  20. O.Y. Pikoul, N.V. Sidorov, Laser Conoscopy of Crystals (KSC RAS Press, Apatity, 2014). (in Russian)

    Google Scholar 

  21. N.V. Sidorov, M.N. Palatnikov, A.A. Yanichev, R.A. Titov, N.A. Teplyakova, Opt. Spectrosc. 121(1), 40 (2016)

    Article  CAS  Google Scholar 

  22. N.V. Sidorov, M.N. Palatnikov, A.A. Yanichev, R.A. Titov, N.A. Teplyakova, J. Appl. Spectrosc. 83(5), 707 (2016)

    Article  CAS  Google Scholar 

  23. N.V. Sidorov, YuA Serebryakov, Ferroelectrics 160, 191 (1994)

    Article  Google Scholar 

  24. N.V. Sidorov, M.N. Palatnikov, N.A. Teplyakova, A.A. Yanichev, R.A. Titov, Proc. SPIE Asia-Pacific Conf. Fundam. Probl. Opto Microelectron. 10176 (2016). https://doi.org/10.1117/12.2268155

  25. A.E. Semyonov, E.V. Cherkasov, J. Phys. Chem. 54(10), 2600 (1980)

    Google Scholar 

  26. A.A. Kruk, N.V. Sidorov, A.A. Yanichev, M.N. Palatnikov, J. Appl. Spectrosc. 81(1), 5 (2014)

    Article  CAS  Google Scholar 

  27. V.S. Gorelik, P.P. Sverbil’, Inorg. Mater. 51(11), 1104 (2015)

    Article  CAS  Google Scholar 

  28. M.R. Okamoto, W. Ping-Chu, J.F. Scott, Phys. Rev. 32B(10), 6787 (1985)

    Google Scholar 

  29. N.V. Sidorov, B.N. Mavrin, P.G. Chufyrev, M.N. Palatnikov, Phonon Spectra of Lithium Niobate Single Crystals, V.T. Kalinnikov (ed.) (KSC RAS Press, Apatity, 2012) (in Russian)

    Google Scholar 

  30. N.V. Surovtsev, V.K. Malonovskii, A.M. Pugachev, A.P. Shebanin, Phys. Solid State 45(3), 505 (2003)

    Article  CAS  Google Scholar 

  31. A.A. Anikjev, Eng. J. Sci. Innov. 19(7), 50 (2013)

    Google Scholar 

  32. M. Umarov, V. Gruzienko, A. Vtjurin, A. Hodgabaev, Compon. Technol. 107(6), 138 (2010)

    Google Scholar 

  33. N.V. Sidorov, E.A. Antonycheva, A.V. Syui, M.N. Palatnikov, Kristallographija 55(6), 1079 (2010)

    Google Scholar 

  34. M.D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, Solid State Commun. 92, 827 (1994)

    Article  CAS  Google Scholar 

  35. F. Abdi, M. Aillerie, P. Bourson, M.D. Fontana, K. Polgar, J. Appl. Phys. 84(4), 2251 (1998)

    Article  CAS  Google Scholar 

  36. S. Uda, K. Shimamura, T. Fukuda, J. Cryst. Growth 155, 229 (1995)

    Article  CAS  Google Scholar 

  37. Yu.К. Voronko, S.B. Gessen, A.B. Kudrjavtsev, A.A. Sobol, E.V. Sorokin, S.N. Ushakov, L.I. Tsimbal, Spectroscopy of oxide crystals for quantum electronics, in Proceedings of GFIRAS, vol. 29 (Nauka, Moscow, 1991) (in Russian)

    Google Scholar 

  38. A.A. Sobol, High-temperature Spectroscopy of Raman Scattering in Solid and Melted Dielectrics, PhD thesis, Moscow, 2012 (in Russian)

    Google Scholar 

  39. Yu.K. Voronko, A.B. Kudrjavtsev, V.V. Osiko, A.A. Sobol, E.V. Sorokin, Phys. Solid State 29(5), 1348 (1987)

    Google Scholar 

  40. S.M. Masloboeva, N.V. Sidorov, M.N. Palatnikov, L.G. Arutjunian, P.G. Chufyrev, J. Inorg. Chem. 56(8), 1 (2011)

    Google Scholar 

  41. R.S. Bubnova, Crystallochemical Design of Borate Materials with a Special Structure-Physical Properties, ICS RAS—80 Years. Modern Problems of Inorganic Chemistry, V.Ya. Shevchenko (ed.) (Art-express, Saint-Petersburg, 2016) (in Russian)

    Google Scholar 

  42. T.B. Bekker, Phase Formation and Growth of Crystals in a Quaternary Mutual System Na, Ba, B, PhD thesis, Novosibirsk, 2015 (in Russian)

    Google Scholar 

  43. N.I. Leonjuk, L.I. Leonjuk, Crystal Chemistry of Waterless Borates (MSU, Moscow, 1983). (in Russian)

    Google Scholar 

  44. C. Huang, S. Wang, N. Ye, J. Alloys Compd. 502, 211 (2010)

    Article  CAS  Google Scholar 

  45. M.P.F. Graça, M.G. Ferreira da Silva, M.A. Valente, J. Non-Cryst. Solids 354, 901 (2008)

    Google Scholar 

  46. M.N. Palatnikov, Materials of Electron Techniques Based on Ferroelectric Materials and Ceramics Solid Solutions of Niobates-tantalates of Alkali Metals with Micro- and Nanostructures, PhD thesis, Apatity, 2010 (in Russian)

    Google Scholar 

  47. R.N. Balasanjan, V.T. Gabrieljan, E.P. Kokanjan, Kristallographija 35(6), 1540 (1990)

    Google Scholar 

  48. R.N. Balasanjan, V.T. Gabrieljan, L.M. Kazarjan, NAS RA Rep. Phys. 100(2), 1 (2000)

    Google Scholar 

  49. O.F. Shirmer, O. Thiemann, M. Wohlecke, J. Phys. Chem. Solids 52(1), 185 (1991)

    Article  Google Scholar 

  50. D.M. Krol, G. Blasse, J. Chem. Phys. 73, 163 (1980)

    Article  CAS  Google Scholar 

  51. L. Redonta, M.F. Da Silva, J.C. Soares, J.A. Sanz-Garcio, E. Dieguez, Lopez F. Agalla, Ind. Instrum. Methods Phys. Res. 64(1–4), 189 (1992)

    Google Scholar 

  52. L.M. Viting, High Temperature Melts-Solutions (Moscow State University Press, Moscow, 1991). (in Russian)

    Google Scholar 

  53. N.I. Leonjuk, Kristallographija 53(3), 546 (2008)

    Google Scholar 

  54. Yu.К. Voronko, S.B. Gessen, A.B. Kudrjavtsev, A.A. Sobol, E.V. Sorokin, S.N. Ushakov, L.I. Tsimbal, High Temperature Raman Spectroscopy—A Method of Study of Phase Transitions in Laser Crystals, in Proceedings of GFIRAS, vol. 29 (Nauka, Moscow, 1991) (in Russian)

    Google Scholar 

  55. Yu.К. Voronko, A.B. Kudrjavtsev, V.V. Osiko, A.A. Sobol, E.V. Sorokin, Bull. Lebedev Phys. Inst. (2), 34 (1987) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay V. Sidorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sidorov, N.V., Teplyakova, N.A., Titov, R.A., Palatnikov, M.N., Syuy, A.V., Prokopiv, N.N. (2019). Fine Particularities of Structure and Optical Properties of Lithium Niobate Crystals Grown from Boron Doped Charge with Different Genesis. In: Parinov, I., Chang, SH., Kim, YH. (eds) Advanced Materials. Springer Proceedings in Physics, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-030-19894-7_21

Download citation

Publish with us

Policies and ethics