Skip to main content

Algae and Cyanobacteria as Biocontrol Agents of Fungal Plant Pathogens

  • Chapter
  • First Online:
Plant Microbe Interface

Abstract

Since long time, algae are used in agriculture as soil amendment for their beneficial effects on plant health and productivity. In fact, algae contain several molecules such as plant growth hormones (cytokinins, auxins, abscisic and gibberellic acid), polysaccharides, betaines and micronutrients. The research on algae, their compounds and their effects on plants have started in the middle 1950s and brought to the formulations of liquid products containing extracts with compounds readily available for plants. The algae extracts, besides having effects on plant growth, have demonstrated to improve plant resistance to both abiotic and biotic stresses. Among biotic stresses, algae showed antifungal activity against different pathogens especially of horticultural plants. From the middle of last century, plant management has always been dependent from the market demand that required growing quantity of ‘perfect’ fruits and vegetables over the year. In this scenario, the chemical industry of fertilizers and pesticides developed new products that have been used for years. In particular, pesticides have represented the base of the management of fungal plant pathogens. During the last decades, the use of both pesticides and chemical fertilizers has represented a serious risk for human health and brought disorder of ecosystem equilibrium. Consequently, algae for their biostimulant and antifungal effects may be considered useful tools to reduce the input of chemicals in integrated pest management strategies. In line with these strategies, the European Regulation EC 1107/2009, concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC, recommends that priority should be given to non-chemical and natural alternatives wherever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbassy MA, Marzouk MA, Rabea EI, Abd-Elnabi AD (2014) Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and their fractions. Annu Res Rev Biol 4:2252–2262

    Article  Google Scholar 

  • Abkhoo J, Sabbagh SK (2016) Control of Phytophthora melonis damping-off, induction of defense responses, and gene expression of cucumber treated with commercial extract from Ascophyllum nodosum. J Appl Phycol 28:1333–1342

    Article  CAS  Google Scholar 

  • Agarwal P, Patel K, Das AK, Ghosh A, Agarwal PK (2016) Insights into the role of seaweed Kappaphycus alvarezii sap towards phytohormone signalling and regulating defence responsive genes in Lycopersicon esculentum. J Appl Phycol 28:2529–2537

    Article  CAS  Google Scholar 

  • Ahmed EA (2016) Antimicrobial activity of microalgal extracts isolated from Baharia Oasis, Egypt. Glob Adv Res J Microbiol 5:033–041

    Google Scholar 

  • Alam MZ, Braun G, Norrie J, Hodges DM (2013) Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can J Plant Sci 93:23–36

    Article  Google Scholar 

  • Alwathnani HA, Perveen K (2012) Biological control of Fusarium wilt of tomato by antagonist fungi and cyanobacteria. Afr J Biotechnol 11:1100–1105

    Google Scholar 

  • Ambika S, Sujatha K (2015) Antifungal activity of brown, red and green alga seaweed extracts against Macrophomina phaseolina (Tassi) Goid., in pideonpea var. CO (Rg) 7. Int J Agric Sci 11:210–216

    Google Scholar 

  • Argueso CT, Ferreira FJ, Epple P, To JP, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:e1002448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arioli T, Mattner SW, Winberg PC (2015) Applications of seaweed extracts in Australian agriculture: past, present and future. J Appl Phycol 27:2007–2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Athukorala Y, Kim K-N, Jeon Y-J (2006) Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 44:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Basak A (2008) Effect of preharvest treatment with seaweed products, Kelpak® and Goëmar BM 86®, on fruit quality in apple. Int J Fruit Sci 8:1–14

    Article  Google Scholar 

  • Black W (1950) The seasonal variation in weight and chemical composition of the common British Laminariaceae. J Mar Biol Assoc UK 29:45–72

    Article  CAS  Google Scholar 

  • Boček S, Salaš P, Sasková H, Mokričková J (2012) Effect of Alginure® (seaweed extract), Myco-Sin®VIN (sulfuric clay) and Polyversum® (Pythium oligandrum Drechs.) on yield and disease control in organic strawberries. Acta Univ Agric Et Silvic Mendel Brun 40:19–28

    Article  Google Scholar 

  • Burja AM, Banaigs EB, Abou-Mansour A, Burgess JG, Wright PC (2001) Marine cyanobacteria – a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Cabrita ARJ, Maia MRG, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, Fonseca AJM (2016) Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol 28:3135–3150

    Article  CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Cluzet S, Torregrosa C, Jacquet C, Lafitte C, Fournier J, Mercier L, Salamagne S, Briand X, Esquerre-Tugaye MT, Dumas B (2004) Gene expressing profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green alga Ulva spp. Plant Cell Environ 27:917–928

    Article  CAS  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Crouch IJ, van Staden J (1992) Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296

    Article  Google Scholar 

  • De Caire GZ, de Cano MS, de Mule MCZ, de Halperin DR (1990) Antimycotic products from the Cyanobacterium Nostoc muscorum against Rhizoctonia solani. Phyton-Buenos-Aires 51:1–4

    Google Scholar 

  • De Caire GZ, De Cano MS, Palma RM, De Mule MCZ (2000) Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biol Biochem 32:1985–1987

    Article  Google Scholar 

  • De Cano MMS, de Mule MCZ, de Caire GZ, de Halperin DR (1990) Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial Cyanobacterium Nostoc muscorum. J Appl Phycol 2:79–81

    Article  Google Scholar 

  • De Cano MMS, De Caire GZ, De Mulé MCZ, Palma RM (2002) Effect of Tolypothrix tenuis and Microchaete tenera on biochemical soil properties and maize growth. J Plant Nutr 25:2421–2431

    Article  CAS  Google Scholar 

  • De Corato U, Salimbeni R, De Pretis A, Avella N, Patruno G (2017) Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biol Technol 131:16–30

    Article  CAS  Google Scholar 

  • Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC et al (2013) The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. elife 2:e01102. https://doi.org/10.7554/eLife.01102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit RB, Suseela MR (2013) Cyanobacteria: potential candidates for drug discovery. Antonie Van Leeuwenhoek 103:947–961

    Article  CAS  PubMed  Google Scholar 

  • Eu Pesticide Database. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.selection&language=EN

  • El-ghanam AA, Farfour SA, Ragab SS (2015) Bio-suppression of strawberry fruit rot disease caused by Botrytis cinerea. J Plant Pathol Microbiol S3:005

    Article  Google Scholar 

  • Encarnação T, Pais AACC, Campos MG, Burrows HD (2015) Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci Prog 98:145–168

    Article  PubMed  Google Scholar 

  • Esserti S, Smaili A, Rifai LA, Koussa T, Makroum K, Belfaiza M, Kabil EM, Faize L, Burgos L, Alburquerque N, Faize M (2017) Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. J Appl Phycol 29:1081–1093

    Article  CAS  Google Scholar 

  • Feliziani E, Landi L, Romanazzi G (2015) Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohyd Polym 132:111–117

    Article  CAS  Google Scholar 

  • Fernandes Peres JC, de Carvalho LR, Gonçalez E, Saggion Berian LO, D’arc Felicio J (2012) Evaluation of antifungal activity of seaweed extracts. Ciênc Agrotec Lavras 36:294–299

    Article  Google Scholar 

  • Frankmölle WP, Larsen LK, Caplan FR, Patterson GML, Knübel G, Levine IA, Moore RE (1992a) Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. I. Isolation and biological properties. J Antibiot 45:1451–1457

    Article  Google Scholar 

  • Frankmölle WP, Patterson GML, Knübel G, Moore RE (1992b) Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. II. Structures of laxaphycins. J Antibiot 45:1458–1466

    Article  Google Scholar 

  • Ghasemi Y, Tabatabaei Yazdi M, Shokravi S, Soltani N, Zarrini G (2003) Antifungal and antibacterial activity of paddy-fields cyanobacteria from the north of Iran. J Sci Islamic Republic of Iran 14:203–209

    Google Scholar 

  • Ghasemi Y, Moradian A, Mohagheghzadeh A, Shokravi S, Morowvat MH (2007) Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus disperses. J Biol Sci 7:904–910

    Article  Google Scholar 

  • Ghazala B, Shameel M (2005) Phytochemistry and bioactivity of some freshwater green algae from Pakistan. Pharm Biol 43:358–369

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Article  PubMed  Google Scholar 

  • Guo ZJ, Lamb C, Dixon RA (1998) Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. Plant Physiol 118:1487–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Prasanna R, Natarajan C, Srivastava AK, Sharma J (2010) Identification, characterization and regulation of a novel antifungal chitosanase gene (cho) in Anabaena sp. Appl Environ Microbiol 76:2769–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Natarajan C, Kumar K, Prasanna R (2011) Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa. J Appl Phycol 23:73–81

    Article  CAS  Google Scholar 

  • Gwinn KD (2018) Bioactive natural products in plant disease control. In: Atta-ur-Rahman (Ed) Studies in natural products chemistry. Elsevier 56:229–246

    Google Scholar 

  • Hernández-Herrera RM, Virgen-Calleros G, Ruiz-López M, Zañudo-Hernández J, Délano-Frier JP, Sánchez-Hernández C (2014) Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. J Appl Phycol 26:1607–1614

    Article  CAS  Google Scholar 

  • Husaini AM, Neri D (2016) Strawberry growth, development and diseases. CABI, Wallingford

    Book  Google Scholar 

  • Ibraheem IBM, Hamed SM, Abd elrhman AA, Farag FM, Abdel-Raouf N (2017) Antimicrobial activities of some brown macroalgae against some soil borne plant pathogens and in vivo management of Solanum melongena root diseases. Aust J Basic Appl Sci 11:157–168

    CAS  Google Scholar 

  • Ibrahim WM, Refaat MA, Khaulood AH, Makram AS (2014) Role of Ulva lactuca extract in alleviation of salinity stress on wheat seedlings. Sci World J 2014:1–11

    Google Scholar 

  • Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O (2000) Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63:339–343

    Article  CAS  PubMed  Google Scholar 

  • Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, Fuentes M, Francisco SS, Baigorri R, Cruz F, Houdusse F, Garcia-Mina JM, Yvin JC, Ourry A (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32:31–52

    Article  CAS  Google Scholar 

  • Jarvis WR, Gubler WD, Grove GG (2002) Epidemiology of powdery mildews in agricultural pathosystems. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, pp 169–199

    Google Scholar 

  • Jayaraj J, Wan A, Rahman M, Punja ZK (2008) Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot 27:1360–1366

    Article  Google Scholar 

  • Jayaraman J, Norrie J, Punja ZK (2011) Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J Appl Phycol 23:353–361

    Article  Google Scholar 

  • Jha MN, Prasad AN (2006) Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf life. World J Microbiol Biotechnol 22:73–79

    Article  CAS  Google Scholar 

  • Jha MN, Sharma SG, Prasad AN (1999) Effect of cyanobacterial fertilization schedules on paddy yield and soil micronutrient status. Ann Agric Res 20:512–514

    Google Scholar 

  • Kannaiyan S (2000) Biological fertilizers for sustainable rice (Oryza sativa) production. Adv Agric Res India 8:67–107

    Google Scholar 

  • Kelman D, Kromkowski Posner E, McDermid KJ, Tabandera NK, Wright PR, Wright AD (2012) Antioxidant activity of Hawaiian marine algae. Mar Drugs 10:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid M, Shameel M, Ahmed V, Shahzad S, Lghani S (2010) Studies on the bioactivity and Phycochemistry of Microcystis aeruginosa (Cyanophyta) from Sindh. Pak J Bot 42(4):2635–2646

    Google Scholar 

  • Khallil AM, Daghman IM, Fady AA (2015) Antifungal potential in crude extracts of five selected brown seaweeds collected from the western Libya coast. J Micro Creat 1:103–107

    Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kim J-D (2006) Screening of cyanobacteria (blue-green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology 34:138–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim J-D (2008) Inhibitory effect of algal extracts on mycelial growth of the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. Mycobiology 36:242–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Krawiec M, Szot I, Krawiec P (2016) The use of laminarin as an effective tool for anti-resistance management in chemical control of grey mould in raspberry. Acta Hortic 1133:469–472

    Article  Google Scholar 

  • Kumar G, Sahoo D (2011) Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. J Appl Phycol 23:251–255

    Article  Google Scholar 

  • Latique S, Elouaer MA, Chernane H, Hannachi C, Elkaou M (2014) Effect of seaweed liquid extract of Sargassum vulgare on growth of durum wheat seedlings (Triticum durum L.) under salt stress. Int J Innov Appl Stud 7:1430–1435

    Google Scholar 

  • Liu M, Wang G, Xiao L, Xu X, Liu X, Xu P, Lin X (2014) Bis (2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar Drugs 12:3838–3851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mabrouk SS, El-Shayeb NMA, El-Refai AH, Sallam LAR, Hamdy AA (1985) Inhibitory activities of some marine algae on aflatoxin accumulation. Appl Microbiol Biotechnol 22:152–155

    Article  CAS  Google Scholar 

  • Manjunath M, Prasanna R, Nain L, Dureja P, Singh R, Kumar A, Jaggi S, Kaushik BD (2010) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol PFL 43:666–677

    Article  Google Scholar 

  • Maqubela MP, Mnkeni PNS, Malam Issa O, Pardo MT, D'Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility and maize growth. Plant Soil 315:79–92

    Article  CAS  Google Scholar 

  • Marrez DA, Sultan YY (2016) Antifungal activity of the cyanobacterium Microcystis aeruginosa against mycotoxigenic fungi. J Appl Pharm Sci 6:191–198

    Article  CAS  Google Scholar 

  • Meszka B, Bielenin A (2011) Activity of laminarin in control of strawberry diseases. Phytopathologia 62:15–23

    Google Scholar 

  • Moon RE, Martin DF (1981) Assay of diverse biological activities of materials elaborated by marine blue green algae, Gomphosphaeria aponina. Microbios Lett 18:103–110

    Google Scholar 

  • Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893

    Article  CAS  PubMed  Google Scholar 

  • Natarajan C, Prasanna R, Gupta V, Dureja P, Lata M (2012) Dissecting the fungicidal activity of Calothrix elenkinii using chemical analyses and microscopy. Appl Biochem Microbiol 48:53–57

    Article  CAS  Google Scholar 

  • Oren A, Garrity GM (2014) Proposal to change general consideration 5 and principle 2 of the international code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 64:309–310

    Article  PubMed  Google Scholar 

  • Osman MEH, El-Sheekh MM, Metwally AM, AEA I, Ismail M (2011) Antagonistic activity of some fungi and cyanobacteria species against Rhizoctonia solani. Int J Plant Pathol 2(3):101–114

    Article  Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic, New York, pp 195–285

    Chapter  Google Scholar 

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fertil Soils 41:451–457

    Article  Google Scholar 

  • Pastrana AM, Basallote-Ureba MJ, Aguado A, Akdi K, Capote N (2016) Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol Mediterr 55:109–120

    CAS  Google Scholar 

  • Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2009) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21:135–144

    Article  Google Scholar 

  • Prasanna R, Nain L, Tripathi R, Gupta V, Chaudhary V, Middha S et al (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria – possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Nain L, Ancha R, Shrikrishna J, Joshi M, Kaushik BD (2009) Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop. Egypt J Biol 11:26–36

    Google Scholar 

  • Prasanna R, Sood A, Jaiswal P, Nayak S, Gupta V, Chaudhary V, Joshi M, Natarajan C (2010) Rediscovering cyanobacteria as valuable sources of bioactive compounds. Appl Biochem Microbiol 46:133–147

    Article  CAS  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Nain L (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353

    Article  Google Scholar 

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1:998507. https://doi.org/10.1080/23311932.2014.998507

    Article  CAS  Google Scholar 

  • Pugliese M, Monchiero M, Gullino ML et al (2018) Application of laminarin and calcium oxide for the control of grape powdery mildew on Vitis vinifera cv. Moscato. J Plant Dis Prot 125:477. https://doi.org/10.1007/s41348-018-0162-8

    Article  Google Scholar 

  • Radhakrishnan B, Prasanna R, Jaiswal P, Nayak S, Dureja P (2009) Modulation of biocidal activity of Calothrix sp. and Anabaena sp. by environmental factors. Biologia 64:881–889

    Article  Google Scholar 

  • Ramkissoon A, Ramsubhag A, Jayaraman J (2017) Phytoelicitor activity of three Caribbean seaweed species on suppression of pathogenic infections in tomato plants. J Appl Phycol 29:3235–3244

    Article  Google Scholar 

  • Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj B (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429

    Article  CAS  Google Scholar 

  • Rekanović E, Potočnik I, Milijašević-Marčić S, Stepanović M, Todorović B, Mihajlović M (2010) Efficacy of seaweed concentrate from Ecklonia maxima (Osbeck) and conventional fungicides in the control of Verticillium wilt of pepper. Pestic Phytomed 25:319–324

    Article  Google Scholar 

  • Righini H, Roberti R, Baraldi E (2018) Use of algae in strawberry management. J Appl Phycol 30:3551–3564. https://doi.org/10.1007/s10811-018-1478-2

    Article  CAS  Google Scholar 

  • Righini H, Baraldi E, García Fernández Y, Martel Quintana A, Roberti R (2019) Different antifungal activity of Anabaena sp., Ecklonia sp., and Jania sp. against Botrytis cinerea. Mar Drugs 17:299. https://doi.org/10.3390/md17050299

    Article  PubMed Central  Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537

    Article  CAS  Google Scholar 

  • Roberti R, Galletti S, Burzi PL, Righini H, Cetrullo S, Perez C (2015) Induction of defence responses in zucchini (Cucurbita pepo) by Anabaena sp. water extract. Biol Control 82:61–68

    Article  CAS  Google Scholar 

  • Roberti R, Righini H, Pérez Reyes C (2016) Activity of seaweed and cyanobacteria water extracts against Podosphaera xanthii on zucchini. Ital J Mycol 45:66–77

    Google Scholar 

  • Rodríguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero D, de Vicente A, Zeriouh H, Cazorla FM, Fernández-Ortuño D, Torés JA, Pérez-García A (2007) Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol 56:976–986

    Article  Google Scholar 

  • Russo P, Cesario A (2012) New anticancer drugs from marine cyanobacteria. Curr Drug Targets 13(8):1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Rustérucci C, Stallaert V, Milat ML, Pugin A, Ricci P, Blein JP (1996) Relationship between active oxygen species, lipid peroxidation, necrosis, and phytoalexin production induced by elicitins in Nicotiana. Plant Physiol 111:885–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373

    Article  CAS  Google Scholar 

  • Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. Evol Biol 11:45. https://doi.org/10.1186/1471-2148-11-45

    Article  Google Scholar 

  • Sharma P, Sharma N (2017) Industrial and biotechnological applications of algae: a review. J Adv Plant Biol 1:1–25

    Article  Google Scholar 

  • Shi D, Hall DO (1988) The Azolla-Anabaena Association: historical perspective, symbiosis and energy metabolism. Bot Rev 54:353–386

    Article  Google Scholar 

  • Simmons TL, Engene N, Ureña LD, Romero LI, Ortega-Barría E, Gerwick L, Gerwick WH (2008) Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. J Nat Prod 71:1544–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Bhushan NK, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview critical reviews in biotechnology. CRC Crit Rev Biotechnol 25:73–95

    Article  CAS  Google Scholar 

  • Sinha SK, Verma DC, Dwivedi CP (2002) Role of green manure (Sesbania rostrata) and biofertilizers (Blue-green algae and Azotobacter) in rice-wheat cropping system in state of Uttar Pradesh, India. Physiol Mol Biol Plants 8:105–110

    Google Scholar 

  • Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG et al (2014) An expanded genomic representation of the phylum Cyanobacteria. Genome Biol Evol 6:1031–1045. https://doi.org/10.1093/gbe/evu073

    Article  PubMed  PubMed Central  Google Scholar 

  • Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P (2015) Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. Peer J 3:e968. https://doi.org/10.7717/peerj.968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari A, Kaur A (2014) Allelopathic impact of cyanobacteria on pathogenic fungi. Int J Pure Appl Biosci 2:63–70

    Google Scholar 

  • Vera J, Castro J, Gonzalez A, Moenne A (2011) Review-Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar Drugs 9:2514–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC (2017) Ecogenomics and taxonomy of cyanobacteria phylum. Front Microbiol 8:2132. https://doi.org/10.3389/fmicb.2017.02132

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Westermeier R, Murúa P, Patiño DJ, Muñoz L, Ruiz A, Müller DG (2012) Variations of chemical composition and energy content in natural and genetically defined cultivars of Macrocystis from Chile. J Appl Phycol 24:1191–1201

    Article  CAS  Google Scholar 

  • Wite D, Mattner SW, Porter IJ, Arioli T (2015) The suppressive effect of a commercial extract from Durvillaea potatorum and Ascophyllum nodosum on infection of broccoli by Plasmodiophora brassicae. J Appl Phycol 27:2157–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Rossi F, Colica G, Deng S, De Philippis R, Chen L (2013) Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas. Biol Fertil Soils 49:143–152

    Article  CAS  Google Scholar 

  • Yadav S, Agrawal M, Raipuria N, Agrawal MK (2016) Antimicrobial Activity of Nostoc calcicola (Cyanobacteria) isolated from central India against human pathogens. Asian J Pharm (Suppl) 10:S554

    CAS  Google Scholar 

  • Yanni YG (1991) Efficiency of rice fertilization schedules including cyanobacteria under soil application of phosphate and molybdate. World J Microbiol Biotechnol 7:415–418

    Article  CAS  PubMed  Google Scholar 

  • Zaccaro MC, De Caire GZ, De Cano MS, Palma RM, Colombo K (1999) Effect of cyanobacterial inoculation and fertilizers on rice seedlings and postharvest soil structure. Commun Soil Sci Plant Anal 30:97–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Roberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Righini, H., Roberti, R. (2019). Algae and Cyanobacteria as Biocontrol Agents of Fungal Plant Pathogens. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_9

Download citation

Publish with us

Policies and ethics