Skip to main content

Truffles and Morels: Two Different Evolutionary Strategies of Fungal-Plant Interactions in the Pezizales

  • Chapter
  • First Online:

Abstract

Pezizales are a widespread group of fungi, basal to the other filamentous ascomycetes. Most species live in soil as saprobes, in a mycorrhizal relationship with a wide range of plants, or as plant parasites. The lineage Morchellaceae–Discinaceae–Helvellaceae–Tuberaceae includes most of the commercially valuable species in the order. The truffles in the genus Tuber and morels in the genus Morchella arguably command more interest in culinary circles than any other groups of mushrooms. In recent years, the interactions of these fungi with plants have been thoroughly researched although many aspects still need to be clarified. In this chapter, we describe and compare these two groups of mushrooms and take a look at the evidence as to whether there are real trophic differences from those traditionally held and if things are not quite as simple as our forebears would have had us believe. We explore the range of host plants involved in the interactions, the morpho-anatomy of symbiotic structures, the molecular mechanisms of symbiosis, and the influence of other microbial species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza, Methods in microbiology, vol 23. Academic, London, pp 25–73. https://doi.org/10.1016/S0580-9517(08)70172-7

    Chapter  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114. https://doi.org/10.1007/s005720100108

    Article  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5(2):67–107. https://doi.org/10.1007/s11557-006-0505-x

    Article  Google Scholar 

  • Alvarado-Castillo G, Mata G, Sangabriel-Conde W (2014) Understanding the life cycle of morels (Morchella spp.). Rev Mex Micol 40:47–50

    Google Scholar 

  • Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S (2014) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847. https://doi.org/10.1111/1462-2920.12294

    Article  CAS  PubMed  Google Scholar 

  • Barbieri E, Gioacchini AM, Zambonelli A, Bertini L, Stocchi V (2005) Determination of microbial volatile organic compounds from against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 19:3411–3415. https://doi.org/10.1002/rcm.2209

    Article  CAS  PubMed  Google Scholar 

  • Barbieri E, Ceccaroli P, Agostini D, Zeppa SD, Gioacchini AM, Stocchi V (2016) Truffle-associated bacteria: extrapolation from diversity to function. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, Soil biology, vol 47. Springer, Cham, pp 301–3017. https://doi.org/10.1007/978-3-319-31436-5_18

    Chapter  Google Scholar 

  • Baynes M, Newcombe G, Dixon L, Castlebury L, O’Donnell K (2012) A novel plant–fungal mutualism associated with fire. Fungal Biol 116:133–144

    Article  PubMed  Google Scholar 

  • Beever R, Lebel T (2014) Truffles of New Zealand: a discussion of bird dispersal characteristics of fruiting bodies. Auckl Bot Soc 69:170–178

    Google Scholar 

  • Bencivenga M, Granetti B (1990) Biometric valuation of mycorrhizae on Ostrya carpinifolia Scop. produced by various truffle species (Tuber sp. pl.). In: Bencivenga M, Granetti B (eds) Proceedings of the 2nd international conference on Truffle, 24–27 Nov 1988, Spoleto. Comunità Montana dei Monti Martani, Serano e Subasio, Spoleto, Italy, pp 265–270

    Google Scholar 

  • Benucci GMN, Gógán Csorbai A, Baciarelli Falini L, Marozzi G, Suriano E, Sitta N, Donnini D (2016) Taxonomy, biology, ecology of Tuber macrosporum Vittad. and Tuber mesentericum Vittad. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, Soil biology, vol 47. Springer International Publishing, Cham, pp 69–86. https://doi.org/10.1007/978-3-319-31436-5_5

    Chapter  Google Scholar 

  • Bertini L, Rossi I, Zambonelli A, Amicucci A, Sacchi A, Cecchini M, Gregori G, Stocchi V (2006) Molecular identification of Tuber magnatum ectomycorrhizae in the field. Microbiol Res 161:59–64. https://doi.org/10.1016/j.micres.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  • Blaschke H (1988) Tuber puberulum. In: Agerer R (ed) Colour atlas of ectomycorrhizae. Einhorn, Schwabisch Gmund, p 22

    Google Scholar 

  • Bonito GM, Smith ME (2016) General systematic position of the truffles: evolutionary theories. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, Soil biology, vol 47. Springer International Publishing, Cham, pp 3–18. https://doi.org/10.1007/978-3-319-31436-5_1

    Chapter  Google Scholar 

  • Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cazares E, Kinoshita A, Nouhra ER, Dominguez LS, Tedersoo L, Murat C, Wang Y, Moreno BA, Pfister DH, Nara K, Zambonelli A, Trappe JM, Vilgalys R (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 8(1):e52765. https://doi.org/10.1371/journal.pone.0052765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonuso E, Zambonelli A, Bergemann SE, Iotti M, Garbelotto M (2010) Multilocus phylogenetic and coalescent analyses identify two cryptic species in the Italian bianchetto truffle, Tuber borchii Vittad. Conserv Genet 11:1453–1466. https://doi.org/10.1007/s10592-009-9972-3

    Article  Google Scholar 

  • Boutahir S, Iotti M, Piattoni F, Zambonelli A (2013) Morphological and molecular characterization of Tuber oligospermum mycorrhizas. Afr J Agric Res 8(29):4081–4087. https://doi.org/10.5897/AJAR2013.7354

    Article  Google Scholar 

  • Brock TD (1951) Studies on the nutrition of Morchella esculenta Fries. Mycologia 43(4):402–422

    Article  CAS  Google Scholar 

  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655. https://doi.org/10.1007/s11103-015-0412-0

    Article  CAS  PubMed  Google Scholar 

  • Buscot F (1989) Field observations on growth and development of Morchella rotunda and Mitrophora semilibera in relation to forest soil temperature. Can J Bot 67:589–593

    Article  Google Scholar 

  • Buscot F (1992a) Mycorrhizal succession and morel biology. In: Read DJ, Lewis DH, Fitten AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, Oxon, pp 220–224

    Google Scholar 

  • Buscot F (1992b) Strategies ecologiques et biologiques des morilles. Cryptogam Mycol 13:171–179

    Google Scholar 

  • Buscot F (1994) Ectomycorrhizal types and endobacteria associated with ectomycorrhizas of Morchella elata (Fr.) Boudier with Picea abies (L.) Karst. Mycorrhiza 4:223–232

    Article  Google Scholar 

  • Buscot F, Kottke I (1990) The association of Morchella Rotunda Boundier with roots of Picea abies Karst. New Phytol 116:425–430

    Article  Google Scholar 

  • Buscot F, Roux J (1987) Association between living roots and ascocarps of Morchella rotunda. Trans Br Mycol Soc 89:249–252

    Article  Google Scholar 

  • Carris LM, Peever TL, McCotter SW (2015) Mitospore stages of Disciotis, Gyromitra and Morchella in the inland Pacific Northwest USA. Mycologia 107:729–744. https://doi.org/10.3852/14-207

    Article  CAS  PubMed  Google Scholar 

  • Cavazzoni V, Manzoni M (1994) Extracellular cellulolytic complex from Morchella conica: production and purification. LWT Food Sci Technol 27:73–77

    Article  CAS  Google Scholar 

  • Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V (2011) Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytol 189:751–764. https://doi.org/10.1111/j.1469-8137.2010.03520.x

    Article  CAS  PubMed  Google Scholar 

  • Cesalpino A (1583) De plantis libri XVI. Apud Georgium Marefcottum, Florentiae

    Google Scholar 

  • Chevalier G (2010) Méthode raisonnée de trufficulture. In: Les nouvelles techniques de culture de la truffe – Actes Colloque Fête internationale de la truffe, 16 January 2009, Sarlat. Service de communication de la ville de Sarlat, Sarlat-en-Périgord, France, pp 55–67

    Google Scholar 

  • Comandini O, Pacioni G (1997) Mycorrhizae of Asian black truffles, Tuber himalayense and T. indicum. Mycotaxon 63:77–86

    Google Scholar 

  • Dahlstrom JL, Smith JE, Weber NS (2000) Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis. Mycorrhiza 9:279–285. https://doi.org/10.1007/PL00009992

    Article  Google Scholar 

  • Delmas J (1978) The potential cultivation of various edible fungi. In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms. Academic, New York, pp 699–724

    Chapter  Google Scholar 

  • Delmas J (1983) La Truffe et sa Culture, 2nd edn. INRA, Paris

    Google Scholar 

  • Dominguez JA, Martin A, Anriquez A, Albanesi A (2012) The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 22(6):429–436. https://doi.org/10.1007/s00572-011-0420-0

    Article  CAS  PubMed  Google Scholar 

  • Dominguez JA, Medina M, Berrocal-Lobo M Anriquez A, Albanesi A (2015) The combined effects of Pseudomonas fluorescens CECT 844 and the black truffle co-inoculation on Pinus nigra seedlings. iForest 8:624–630. https://doi.org/10.3832/ifor1334-007

    Article  Google Scholar 

  • Du XH, Zhao Q, Yang ZL, Hansen K, Taşkin H, Büyükalaca S, Dewsbury D, Moncalvo JM, Douhan GW, Robert VARG, Crous PW, Rehner SA, Rooney AP, Sink S, O’Donnell K (2012) How well do ITS rDNA sequences differentiate species of true morels (Morchella)? Mycologia 104(6):1351–1368. https://doi.org/10.3852/12-056

    Article  PubMed  Google Scholar 

  • Du XH, Zhao Q, Xia EH, Gao LZ, Richard F, Yang ZL (2016) Mixed-reproductive strategies, competitive mating-type distribution and life cycle of fourteen black morel species. Sci Rep 7:1493. https://doi.org/10.1038/s41598-017-01682-8

    Article  CAS  Google Scholar 

  • Duponnois R (2006) Mycorrhizal helper bacteria: their ecological impact in mycorrhizal symbiosis. In: Mahendra R (ed) Handbook of microbial biofertilizers. Haworth Press, New York, pp 231–250

    Google Scholar 

  • Egger KN, Paden JW (1986) Pathogenicity of postfire ascomycetes (Pezizales) on seeds and germinants of lodgepole pine. Can J Bot 64(10):2368–2371. https://doi.org/10.1139/b86-312

    Article  Google Scholar 

  • Fan L, Han L, Zhang PR, Yan XY (2017a) Molecular analysis of Chinese truffles resembling Tuber californicum in morphology reveals a rich pattern of species diversity with emphasis on four new species. Mycologia 108:344–353. https://doi.org/10.3852/14-343

    Article  CAS  Google Scholar 

  • Fan L, Zhang PR, Yan XY (2017b) Phylogenetic analyses of Chinese Tuber species that resemble T. borchii reveal the existence of the new species T. hubeiense and T. wumengense. Mycologia 108:354–362. https://doi.org/10.3852/14-349

    Article  Google Scholar 

  • Fasolo-Bonfante P, Fontana A, Montacchini F (1971) Studi sull’ecologia del Tuber melanosporum. Demostrazione di un effetto fitotossico. Allionia 17:47–54

    Google Scholar 

  • Frank AB (1885) Uher die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M, Courrier S, Roux CL, Raaijmakers J, Martinotti MG, Pierrat J, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328. https://doi.org/10.1111/j.1469-8137.2004.01212.x

    Article  PubMed  Google Scholar 

  • Fron G (1905) Sur les conditions de developpement du mycelium de la morille. Compt Rend Acad Sci Paris 140:1187–1189

    Google Scholar 

  • Fujimura KE, Smith JE, Horton TR, Weber NS, Spatafora JW (2005) Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA. Mycorrhiza 15:79–86

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210. https://doi.org/10.1111/j.1469-8137.1994.tb04003.x

    Article  PubMed  Google Scholar 

  • Garcia-Montero LG, Di Massimo G, Manjón JL, García-Abril A (2008) New data on ectomycorrhizae and soils of the Chinese truffles Tuber pseudoexcavatum and Tuber indicum, and their impact on truffle cultivation. Mycorrhiza 19:7–14. https://doi.org/10.1007/s00572-008-0198-x

    Article  PubMed  Google Scholar 

  • Giomaro G, Zambonelli A, Cecchini D, Stocchi V, Saffi V (2000) Anatomical and morphological characterization of mycorrhizas of five strains of Tuber borchii Vittad. Mycorrhiza 10(3):107–114. https://doi.org/10.1007/s005720000065

    Article  Google Scholar 

  • Godbout C, Fortin JA (1985) Synthesized ectomycorrhizae of aspen: fungal genus level of structural characterization. Can J Bot 63:252–262

    Article  Google Scholar 

  • Goldway M, Rachel A, Goldberg D, Hadar Y, Levanon D (2000) Morchella conica exhibiting a long fruiting season. Mycol Res 104:1000–1004

    Article  Google Scholar 

  • Granetti B, Bencivenga M (1990) Morphological aspects of the mycorrhizae of some Tuber species with Ostrya carpinifolia Scop. In: Bencivenga M & Granetti B (eds) Proceedings of the 2nd International Conference on Truffle, 24–27 November 1988, Spoleto. Comunità Montana dei Monti Martani, Serano e Subasio, Spoleto, Italy, p 271

    Google Scholar 

  • Granetti B, De Angelis A, Materozzi G (2005) Umbria terra di tartufi. Regione Umbria, Assessorato Regionale Agricoltura, Foreste. Caccia e Pesca, Perugia

    Google Scholar 

  • Greene DF, Hesketh M, Pounden E (2010) Emergence of morel (Morchella) and pixie cup (Geopyxis carbonaria) ascocarps in response to the intensity of forest floor combustion during a wildfire. Mycologia 102:766–773. https://doi.org/10.3852/08-096

    Article  PubMed  Google Scholar 

  • Gryndler M (2016) True truffle host diversity. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, Soil biology, vol 47. Springer International Publishing, Cham, pp 267–281. https://doi.org/10.1007/978-3-319-31436-5_16

    Chapter  Google Scholar 

  • Gryndler M, Hršelová H (2012) Isolation of bacteria from ectomycorrhizae of Tuber aestivum Vittad. Acta Mycol 47(2):155–160. https://doi.org/10.5586/am.2012.018

    Article  Google Scholar 

  • Gryndler M, Soukupová L, Hršelová H, Gryndlerová H, Borovička J, Streiblová E, Jansa J (2013a) Tuber aestivum-associative prokaryotes. Environ Microbiol Rep 5:346–352. https://doi.org/10.1111/1758-2229.12014

    Article  PubMed  Google Scholar 

  • Gryndler M, Trilčová J, Hršelová H, Streiblová E, Gryndlerová H, Jansa J (2013b) Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23(5):341–348. https://doi.org/10.1007/s00572-012-0475-6

    Article  PubMed  Google Scholar 

  • Gryndler M, Černá L, Bukovská P, Hršelová H, Jansa J (2014) Tuber aestivum association with non-host roots. Mycorrhiza 24(8):603–610. https://doi.org/10.1007/s00572-014-0580-9

    Article  PubMed  Google Scholar 

  • Hall IR, Brown GT, Zambonelli A (2007) Taming the truffle. Timber Press, Portland

    Google Scholar 

  • Hall IR, Fitzpatrick N, Miros P, Zambonelli A (2017) Counter-season cultivation of truffles in the Southern Hemisphere – an update. Ital J Mycol 46:21–36. https://doi.org/10.6092/isnn.2531-7342/XXXX

    Article  Google Scholar 

  • Hansen K, Pfister DH (2006) Systematics of the Pezizomycetes the operculate discomycetes. Mycologia 98(6):1029–1040. https://doi.org/10.1080/15572536.2006.11832631

    Article  CAS  PubMed  Google Scholar 

  • Harbin M, Volk TJ (1999) The association of Morchella with plant roots. In: Abstract of the XVI international botanical congress, 1–7 Aug 1999. Mycological Society of America, St. Louis, Missouri, p 559

    Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Healy RA, Smith ME, Bonito GM, Pfister DH, Ge ZW, Guevara GG, Williams G, Stafford K, Kumar L, Lee T, Hobart C, Trappe J, Vilgalys R, McLaughlin DJ (2013) High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol Ecol 22(6):1717–1732. https://doi.org/10.1111/mec.12135

    Article  CAS  PubMed  Google Scholar 

  • Healy RA, Zurier H, Bonito G, Smith ME, Pfister DH (2016) Mycorrhizal detection of native and non-native truffles in a historic arboretum and the discovery of a new North American species, Tuber arnoldianum sp. nov. Mycorrhiza 26(7):781–792. https://doi.org/10.1007/s00572-016-0713-4

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Weber NS, Trappe JM (2001) Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytol 150:601–610. https://doi.org/10.1046/j.1469-8137.2001.00134.x

    Article  CAS  Google Scholar 

  • Hobbie EA, Rice SF, Weber NS, Smith JE (2016) Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 108:638–645. https://doi.org/10.3852/15-281

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Amicucci A, Stocchi V, Zambonelli A (2002) Morphological and molecular characterization of mycelia of some Tuber species in pure culture. New Phytol 155:499–505. https://doi.org/10.1046/j.1469-8137.2002.00486.x

    Article  PubMed  Google Scholar 

  • Iotti M, Barbieri E, Stocchi V, Zambonelli A (2005) Morphological and molecular characterisation of mycelia of ectomycorrhizal fungi in pure culture. Fungal Divers 19:51–68

    Google Scholar 

  • Iotti M, Amicucci A, Bonito G, Bonuso E, Stocchi V, Zambonelli A (2007) Selection of a set of specific primers for the identification of Tuber rufum: a truffle species with high genetic variability. FEMS Microbiol Lett 277(2):223–231. https://doi.org/10.1111/j.6968.2007.00963.x

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Leonardi M, Lancellotti E, Salerni E, Oddis M, Leonardi P, Perini C, Pacioni G, Zambonelli A (2014) Spatio-temporal dynamic of Tuber magnatum mycelium in natural truffle grounds. PLoS One 9(12):e115921. https://doi.org/10.1371/journal.pone.0115921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iotti M, Leonardi P, Vitali G, Zambonelli A (2018) Effect of summer soil moisture and temperature on the vertical distribution of Tuber magnatum mycelium in soil. Biol Fertil Soils 54:707–716. https://doi.org/10.1007/s00374-018-1296-3

    Article  Google Scholar 

  • Kageyama SA, Mandyam KG, Jumpponen A (2008) Diversity, function and potential applications of the root-associated endophytes. Mycorrhiza 18:29–57

    Article  Google Scholar 

  • Kanwal HK, Reddy MS (2011) Effect of carbon, nitrogen sources and inducers on ligninolytic enzyme production by Morchella crassipes. World J Microbiol Biotechnol 27:687–691

    Article  CAS  Google Scholar 

  • Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61(1):153–163

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PG, Smith DP, Horton TR, Molina RJ (2012) Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. Am J Bot 99:1691–1701. https://doi.org/10.3732/ajb.1200277

    Article  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. CABI, Wallingford

    Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, H€ogberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Consortium MGI, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. https://doi.org/10.1038/ng.3223

    Article  CAS  PubMed  Google Scholar 

  • Kuo M, Dewsbury DR, O’Donnell K, Carter MC, Rehner SA, Moore JD, Moncalvo JM, Canfield SA, Stephenson SL, Methven AS, Volk TJ (2012) Taxonomic revision of true morels (Morchella) in Canada and the United States. Mycologia 104:1159–1177. https://doi.org/10.3852/11-375

    Article  PubMed  Google Scholar 

  • Læssøe T, Hansen K (2007) Truffle trouble: what happened to the Tuberales? Mycol Res 111(9):1075–1099. https://doi.org/10.1016/j.mycres.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  • Lakhanpal TN, Shad OS, Sagar A (1991) Mycorrhiza: a possible deterrent in artificial cultivation of morels. Curr Sci 60:375–377

    Google Scholar 

  • Lancellotti E, Iotti M, Zambonelli A, Franceschini A (2014) Characterization of Tuber borchii and Arbutus unedo mycorrhizas. Mycorrhiza 24(6):481–486. https://doi.org/10.1007/s00572-014-0564-9

    Article  PubMed  Google Scholar 

  • Lancellotti E, Iotti M, Zambonelli A, Franceschini A (2016) The Puberulum group sensu lato (whitish truffles). In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, Soil biology, vol 47. Springer International Publishing, Cham, pp 105–124

    Chapter  Google Scholar 

  • Landvik S, Egger K, Schumacher T (1997) Toward a subordinal classification of the Pezizales (Ascomycota): phylogenetic analyses SSU rDNA sequences. Nord J Bot 17:403–418. https://doi.org/10.1111/j.1756-1051.1997.tb00337.x

    Article  CAS  Google Scholar 

  • Lanza B, Oweczarek M, De Marco A, Raglione M (2004) Evaluation of phytotoxicity and genotoxicity of substances produced by Tuber aestivum and distributed in the soil using Vicia faba root micronucleus test. Fresenius Environ Bull 13:1410–1414

    CAS  Google Scholar 

  • Larson AJ, Cansler CA, Cowdery SG, Hiebert S, Furniss TJ, Swanson ME, Lutz JA (2016) Post-fire morel (Morchella) mushroom abundance, spatial structure, and harvest sustainability. For Ecol Manag 377:16–25

    Article  Google Scholar 

  • Le Tacon F, Rubini A, Murat C, Riccioni C, Robin C, Belfiori B, Zeller B, De la Varga H, Akroume E, Deveau A, Martin F, Paolocci F (2016) Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum Vittad.). Ann For Sci 73(1):105–117. https://doi.org/10.1007/s13595-015-0461-1

    Article  Google Scholar 

  • Leonardi M, Iotti M, Oddis M, Lalli G, Pacioni G, Leonardi P, Maccherini S, Perini C, Salerni E, Zambonelli A (2013) Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 23(5):349–358. https://doi.org/10.1007/s00572-012-0474-7

    Article  CAS  PubMed  Google Scholar 

  • Leonardi P, Iotti M, Donati Zeppa S, Lancellotti E, Amicucci A, Zambonelli A (2017) Morphological and functional changes in mycelium and mycorrhizas of Tuber borchii due to heat stress. Fungal Ecol 29:20–29

    Article  Google Scholar 

  • Liu Q, Ma H, Zhang Y, Dong C (2018) Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 38:259–271

    Article  PubMed  Google Scholar 

  • Martin FM, Hilbert JL (1991) Morphological, biochemical and molecular changes during ectomycorrhiza development. Experientia 47:321–331. https://doi.org/10.1007/BF01972073

    Article  CAS  Google Scholar 

  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154. https://doi.org/10.1046/j.1469-8137.2001.00169.x

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Mello M, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464(7291):1033–1038. https://doi.org/10.1038/nature08867

    Article  CAS  PubMed  Google Scholar 

  • Masaphy S (2010) Biotechnology of morel mushrooms: successful fruiting body formation and development in a soilless system. Biotechnol Lett 32:1523–1527. https://doi.org/10.1007/s10529-010-0328-3

    Article  CAS  PubMed  Google Scholar 

  • Masaphy S, Zabari L (2013) Observations on post-fire black morel ascocarp development in an Israeli burnt forest site and their preferred micro-sites. Fungal Ecol 6:316–318

    Article  Google Scholar 

  • Matruchot L (1909) La culture des champignons comestibles, Paris, pp 418–659

    Google Scholar 

  • Mello A, Fontana A, Meotto F, Comandini O, Bonfante P (2001) Molecular and morphological characterization of T. magnatum mycorrhizas in a long-term survey. Microbiol Res 155(4):279–284. https://doi.org/10.1016/S0944-5013(01)80005-7

    Article  CAS  PubMed  Google Scholar 

  • Menotta M, Amicucci A, Sisti D (2004a) Differential gene expression during pre-symbiotic interaction between Tuber borchii Vittad. and Tilia americana L. Curr Genet 46:158–165. https://doi.org/10.1007/s00294-004-0518-4

    Article  CAS  PubMed  Google Scholar 

  • Menotta M, Gioacchini AM, Amicucci A, Buffalini M, Sisti D, Stocchi V (2004b) Headspace solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomycorrhizae synthesis system. Rapid Commun Mass Spectrom 18:206–210. https://doi.org/10.1002/rcm.1314

    Article  CAS  PubMed  Google Scholar 

  • Miller SL, Torres P, McClean TM (1994) Persistence of basidiospores and sclerotia of ectomycorrhizal fungi and Morchella in soil. Mycologia 86:89–95

    Article  Google Scholar 

  • Molliard M (1904) Mycelium et forme conidienne de la morille. CR Hebd Acad Sci 138:516–517

    Google Scholar 

  • Morte A, Lovisolo C, Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza 10:115–119. https://doi.org/10.1007/s005720000066

    Article  CAS  Google Scholar 

  • Moser M (1949) Über das Massenauftreten von Formen der Gattung Morchella auf Waldbrandflächen Syndowia. Ann Mycol Ser 2:174–195

    Google Scholar 

  • Murat C, Payen T, Noel B, Kuo A, Morin E, Chen J, Kohler A, Krizsán K, Balestrini R, Da Silva C, Montanini B, Hainaut M, Levati E, Barry KW, Belfiori B, Cichocki N, Clum A, Dockter RB, Fauchery L, Guy J, Iotti M, Le Tacon F, Lindquist EA, Lipzen A, Malagnac F, Mello A, Molinier V, Miyauchi S, Poulain J, Riccioni C, Rubini A, Sitrit Y, Splivallo R, Traeger S, Wang M, Žifčáková L, Wipf D, Zambonelli Z, Paolocci F, Nowrousian M, Ottonello S, Baldrian P, Spatafora JW, Henrissat B, Nagy LG, Aury JM, Wincker P, Grigoriev IV, Bonfante P, Martin FM (2018) Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat Ecol Evol 2:1956–1965. https://doi.org/10.1038/s41559-018-0710-4

    Article  PubMed  Google Scholar 

  • Navarro-Ródenas A, Bárzana G, Nicolás E, Carra A, Schubert A, Morte A (2013) Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Mol Plant Microb Interact 26(9):1068–1078. https://doi.org/10.1094/MPMI-07-12-0178-R

    Article  CAS  Google Scholar 

  • O’Donnell K, Rooney AP, Mills GL, Kuo M, Weber NS, Rehner SA (2011) Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genet Biol 48:252–265. https://doi.org/10.1016/j.fgb.2010.09.006

    Article  PubMed  Google Scholar 

  • Olivier JM, Savignac JC, Sourzat P (2012) Truffe et trufficulture. Fanlac, Périgueux

    Google Scholar 

  • Ouanphanivanh N, Merényi Z, Orczán AK, Bratek Z, Szigeti Z, Illyés Z (2008) Could orchids indicate truffle habitats? Mycorrhizal association between orchids and truffles. Acta Biol Szegediensis 52:229–232

    Google Scholar 

  • Ower R (1982) Notes on the development of the morel ascocarp: Morchella esculenta. Mycologia 74:142–144

    Article  Google Scholar 

  • Ower RD, Mills GL, Malachowski JA (1988) Cultivation of Morchella. US Patent No. US4866878A

    Google Scholar 

  • Pacioni G (1991) Effects of Tuber metabolites on the rhizospheric environment. Mycol Res 95:1355–1358. https://doi.org/10.1016/S0953-7562(09)80384-5

    Article  CAS  Google Scholar 

  • Paolocci F, Rubini A, Riccioni C, Arcioni S (2006) Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol 72(4):2390–2393. https://doi.org/10.1128/AEM.72.4.2390-2393.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papinutti L, Lechner B (2008) Influence of the carbon source on the growth and lignocellulolytic enzyme production by Morchella esculenta strains. J Ind Microbiol Biotechnol 35:1715–1721

    Article  CAS  PubMed  Google Scholar 

  • Pargney JC, Jalade M (1995) Cytological study of fungal structures forming stromas on roots of truffle mycorrhizal plantlets. Bull Acad Soc Lorraines Sci 34:27–44

    Google Scholar 

  • Pargney JC, Chevalier G, Dupré C, Genet P, Jalade M (2001) Etude des stromas fongiques se développant sur les racines des plants mycorhizés par la truffe. In: Actes Vème Congrès International “Science et Culture de la Truffe”, 4–6 Mars 1999, Aix-en-Provence. Fédération Française des Trufficulteurs, Paris, France, pp 167–172

    Google Scholar 

  • Peng W, Chen Y, Tan H, Tang J, Gan B (2015) Artificial cultivation of morels is blooming in Sichuan. Bulletin of the world society for mushroom biology and mushroom products. www.wsmbmp.org/Bol13/5.html

  • Perotto S, Angelini P, Bianciotto V, Bonfante P, Girlanda M, Kull T, Mello A, Pecoraro L, Perini C, Persiani AM, Saitta A, Sarrocco S, Vannacci G, Venanzoni R, Venturella G, Selosse MA (2013) Interactions of fungi with other organisms. Plant Biosyst 147:208–218. https://doi.org/10.1080/11263504.2012.753136

    Article  Google Scholar 

  • Peterson RL, Bonfante P (1994) Comparative structure of vesicular arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159:79–88

    Article  Google Scholar 

  • Pfister DH (2015) 2 pezizomycotina: pezizomycetes, orbiliomycetes. In: McLaughlin D, Spatafora J (eds) Syst evol, The mycota, vol 7B. Springer, Berlin. https://doi.org/10.1007/978-3-662-46011-5_2

    Chapter  Google Scholar 

  • Philippoussis A, Balis C (1995) Studies on the morphogenesis of sclerotia and subterranean mycelial network of ascocarps in Morchella species. Sci Cultivation Edible Fungi 2:847–855

    Google Scholar 

  • Pilz D, McLain R, Alexander S, Villarreal-Ruiz L, Berch S, Wurtz TL, Parks CG, McFarlane E, Baker B, Molina R, Smith JE (2007) Ecology and management of morels harvested from the forests of western North America. General Technical Report PNW-GTR-710, USDA, Forest Service, PNW 161

    Google Scholar 

  • Pion M, Spangenberg JE, Simon A, Bindschedler S, Flury C, Chatelain A, Bshary R, Job D, Junier P (2013) Bacterial farming by the fungus Morchella crassipes. Proc R Soc Lond [Biol] 280(1773):2013–2242

    Article  Google Scholar 

  • Plattner I, Hall IR (1995) Parasitism of non-host plants by the mycorrhizal fungus Tuber melanosporum. Mycol Res 99(11):1367–1370. https://doi.org/10.1016/S0953-7562(09)81223-9

    Article  Google Scholar 

  • Ragnelli AM, Aimola P, Maione M, Zarivi O, Leonardi M, Pacioni G (2014) The cell death phenomenon during Tuber ectomycorrhiza morphogenesis. Plant Biosyst 148:473–482

    Article  Google Scholar 

  • Reyna S (2007) Truficultura Fundamentos y técnicas. Mundi-Prensa, Madrid

    Google Scholar 

  • Riccioni C, Rubini A, Belfiori B, Gregori G, Paolocci F (2016) Tuber magnatum: the special one. What makes it so different from the other Tuber spp.? In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the world, Soil biology, vol 47. Springer International Publishing, Cham, pp 87–103

    Chapter  Google Scholar 

  • Richard F, Bellanger JM, Clowez P, Hansen K, O’Donnell K, Urban A, Sauve M, Courtecuisse R, Moreau PA (2015) True morels (Morchella, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia 107(2):359–382. https://doi.org/10.3852/14-166

    Article  PubMed  Google Scholar 

  • Riousset G, Riousset L, Chevalier G, Bardet MC (2001) Truffes d’Europe et de Chine. INRA, Paris

    Google Scholar 

  • Robbins WJ, Hervey A (1959) Wood extract and growth of Morchella. Mycologia 51(3):356–363

    Article  Google Scholar 

  • Robert ME (1865) Relation entre la famille des oleïnées et les morilles. Bull Soc Bot Fr 12(5):244–246

    Article  Google Scholar 

  • Roze ME (1883) Le parasitisme du Morchella esculenta Pers. sur l’Helianthus tuberosus L. Bull Soc Bot Fr 30:139–143

    Article  Google Scholar 

  • Rubini A, Paolocci F, Granetti B, Arcioni S (2001) Morphological characterization of molecular typed Tuber magnatum ectomycorrhizae. Mycorrhiza 11:179–185. https://doi.org/10.1007/s005720100116

    Article  CAS  Google Scholar 

  • Sbrana C, Agnolucci M, Bedini S, Lepera A, Toffanin A, Giovannetti M, Nuti MP (2002) Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol Lett 211:195–201. https://doi.org/10.1111/j.1574-6968.2002.tb11224.x

    Article  CAS  PubMed  Google Scholar 

  • Schelkle M, Ursic M, Farquhar M, Peterson RL (1996) The use of laser scanning confocal microscopy to characterize mycorrhizas of Pinus strobus L. and to localize associated bacteria. Mycorrhiza 6:431–440. https://doi.org/10.1007/s005720050143

    Article  Google Scholar 

  • Schneider-Maunoury L, Leclercq S, Clément C, Covès H, Lambourdièere J, Sauve M, Richard F, Selosse MA, Taschen E (2018) Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol 31:59–68

    Article  Google Scholar 

  • Selosse MA, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426. https://doi.org/10.1007/s00248-003-2034-3

    Article  CAS  PubMed  Google Scholar 

  • Shamekh S, Donnini D, Zambonelli A, Leisola M (2009) Wild Finnish truffles. Acta Bot Yunnanica 31:69–71

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Amsterdam

    Google Scholar 

  • Snabl M, Guidori U, Gianchino C, Iotti M, Zambonelli A (2019) Morels on the sand dunes of the Emilia-Romagna coast (Northwestern Adriatic Sea, Italy). Ital J Mycol 48:16–25. https://doi.org/10.6092/issn.2531-7342/9374

    Article  Google Scholar 

  • Sourzat P (2004) Questions d’écologie appliquées a la trufficulture. Lycée professionnel agricole de Cahors-Le Montat, Impression 43029, Le Montat

    Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175(3):417–424. https://doi.org/10.1111/j.1469-8137.2007.02141.x

    Article  CAS  Google Scholar 

  • Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Stefani FOP, Sokolski S, Wurtz TL, Piché Y, Hamelin RC, Fortin JA, Bérubé JA (2010) Morchella tomentosa: a unique belowground structure and a new clade of morels. Mycologia 102(5):1082–1088

    Article  PubMed  Google Scholar 

  • Streiblová E, Gryndlerová H, Gryndler M (2012) Truffle brŭlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80(1):1–8. https://doi.org/10.1111/j.1574-6941.2011.01283.x

    Article  CAS  PubMed  Google Scholar 

  • Tarkka MT, Frey-Klett P (2008) Mycorrhiza helper bacteria. In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 113–132

    Chapter  Google Scholar 

  • Taschen E, Rousset F, Sauve M, Benoit L, Dubois M, Richard F, Selosse M (2016) How the truffle got its mate: insights from genetic structure in spontaneous and planted Mediterranean populations of Tuber melanosporum. Mol Ecol 25:5611–5627. https://doi.org/10.1111/mec.13864

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Hansen K, Brian AP, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170(3):581–596. https://doi.org/10.1111/j.1469-8137.2006.01678.x

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM, Claridge A (2010) The hidden life of truffles: not just for gourmands, truffles play essential roles in the health of ecosystems. Sci Am 302(4):78–84. https://doi.org/10.1038/scientificamerican0410-78

    Article  PubMed  Google Scholar 

  • Urban A, Neuner-Plattner I, Krisai-Greilhuber I, Haselwandter K (2004) Molecular studies on terricolous microfungi reveal novel anamorphs of two Tuber species. Mycol Res 108:749–758. https://doi.org/10.1017/S0953756204000553

    Article  CAS  PubMed  Google Scholar 

  • Volk TJ, Leonard TJ (1989) Physiological and environmental studies of sclerotium formation and maturation in isolates of Morchella crassipes. Appl Environ Microbiol 55:3095–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wassom JJ, Holden DJ (1977) The use of plant tissue culture techniques for studying the growth of morel [mushroom, Morchella esculenta]. Proc S D Acad Sci 56:197–206

    Google Scholar 

  • Winder RS, Keefer ME (2008) Ecology of the 2004 morel harvest in the Rocky Mountain forest. D BC Botany 86:1152–1167

    Article  Google Scholar 

  • Wipf D, Koschinsky S, Clowez P, Munch JC, Botton B, Buscot F (1997) Recent advances in ecology and systematics of morels. Cryptogam Mycol 18:95–109

    Google Scholar 

  • Yamada A, Katsuya K (1995) Mycorrhizal association of isolates from sporocarps and ectomycorrhizas with Pinus densiflora seedlings. Mycoscience 36:315–323

    Article  Google Scholar 

  • Yu D, Bu F, Hou J, Kang Y, Yu Z (2016) A morel improved growth and suppressed Fusarium infection in sweet corn. World J Microbiol Biotechnol 32:192

    Article  PubMed  Google Scholar 

  • Zacchi L, Vaughan-Martini A, Angelini P (2003) Yeast distribution in a truffle-field ecosystem. Ann Microbiol 53:275–282

    Google Scholar 

  • Zambonelli A, Salomoni S, Pisi A (1993) Caratterizzazione anatomo-morfologica delle micorrize di Tuber spp. su Quercus pubescens Willd. Micol Ital 22:73–90

    Google Scholar 

  • Zambonelli A, Salomoni S, Pisi A (1995) Caratterizzazione anatomo-morfologica delle micorrize di Tuber borchii, Tuber aestivum, Tuber mesentericum, Tuber brumale, Tuber melanosporum su Pinus pinea. Micol Ital 24:119–137

    Google Scholar 

  • Zambonelli A, Rivetti C, Percudani R, Ottonello S (2000) TuberKey: a DELTA-based tool for the description and interactive identification of truffles. Mycotaxon 74:57–76

    Google Scholar 

  • Zambonelli A, Ori F, Hall I (2017) Mycophagy and spore dispersal by vertebrates. In: Dighton A, White JF (eds) The fungal community: its organization and role in the ecosystem, 4th edn. Tylor and Francis/ACR Press, Boca Raton, FL

    Google Scholar 

  • Zampieri E, Murat C, Cagnasso M, Bonfante P, Mello A (2010) Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle ground. FEMS Microbiol Ecol 71(1):43–49. https://doi.org/10.1111/j.1574-6941.2009.00783.x

    Article  CAS  PubMed  Google Scholar 

  • Zarivi O, Bonfigli A, Colafarina S, Aimola PP, Ragnelli AM, Pacioni G, Miranda M (2011) Tyrosinase expression during black truffle development: from free living mycelium to ripe fruitbody. Phytochemistry 72(18):2317–2324. https://doi.org/10.1016/j.phytochem.2011.08.025

    Article  CAS  PubMed  Google Scholar 

  • Zarivi O, Bonfigli A, Colafarina S, Aimola P, Ragnelli AM, Miranda M, Pacioni G (2013) Transcriptional, biochemical and histochemical investigation on laccase expression during Tuber melanosporum Vittad. development. Phytochemistry 87:23–29. https://doi.org/10.1016/j.phytochem.2012.11.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Iotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ori, F., Hall, I., Gianchino, C., Iotti, M., Zambonelli, A. (2019). Truffles and Morels: Two Different Evolutionary Strategies of Fungal-Plant Interactions in the Pezizales . In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_3

Download citation

Publish with us

Policies and ethics