Skip to main content

Biological Control of Soft-Rot of Ginger: Current Trends and Future Prospects

  • Chapter
  • First Online:
Plant Microbe Interface

Abstract

Ginger (Zingiber officinale Roscoe) is an important crop having various medicinal, nutritional, and ethnomedicinal properties cultivated all over the world. Pythium and Fusarium spp. are pathogens responsible for the deteriorating disease in ginger known as soft- or rhizome-rot, causing more than 50% loss of ginger crop worldwide. The application of chemical fungicides is a promising method for control of soft-rot in ginger. But use of such fungicides is harmful to both environment and human health. Thus, there is an obligatory need for the search of an eco-friendly and economic approach for the control of soft-rot in ginger. Various physical, chemical, and biological methods have already been in practice since many years for managing soft-rot in ginger. This chapter primarily focuses on the advantages of biological control over chemical methods of Pythium and Fusarium spp. management using antagonistic fungi, bacteria, actinomycetes, and plant extracts. These biocontrol agents offer the best opportunity in control of diseases and also help to maintain the quality and crop yield. Moreover, the emerging role of nanotechnology in the management of these pathogens is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Riga E, Conn KL, Lazarovits G (2005) Effect of neem cake soil amendment on reduction of damping-off severity and population densities of plant-parasitic nematodes and soil borne plant pathogens. Can J Plant Pathol 27:38e45

    Google Scholar 

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer, Cham, (ISBN 978-3-319-91161-8)

    Book  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier\Academic, Burlington, MA

    Google Scholar 

  • Ahmed IS, Lee YS (2015) Nanoparticles as alternative pesticides: concept manufacturing and activities. Kor J Mycol 43:207–215

    Google Scholar 

  • Al-Ani RA, Adhab MA, Mahdi MH, Abood HM (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protect Sci 48:149–155

    Article  Google Scholar 

  • Al-Mughrabi KI (2003) Antimicrobial activity of extracts from leaves, stems and flowers of Euphorbia macroclada against plant pathogenic fungi. Phytopathol Mediterr 42:245–250

    Google Scholar 

  • Ambikapathy V, Gomathi S, Panneerselva MA (2011) Effect of antifungal activity of some medicinal plants against Pythium debaryanum (Hesse). Asian J Plant Sci Res 1(3):131–134

    Google Scholar 

  • Anisha C, Radhakrishnan EK (2015) Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft-rot pathogen Pythium myriotylum. Appl Microbiol Biotechnol 175:3458–3467

    CAS  Google Scholar 

  • Ashwini N, Srividya S (2012) Optimization of chitinase produced by a biocontrol strain of B. subtilis using Plackett-Burman design. Eur J Exp Biol 2:861–865

    Google Scholar 

  • Bahraminejad S (2012) In vitro and in vivo antifungal activities of Iranian plant species against Pythium aphanidermatum. Ann Biol Res 3:2134–2145

    Google Scholar 

  • Banker S, Volova T, Prudnikova SV, Satish S, Prasad N (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17

    Article  CAS  Google Scholar 

  • Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv Viceae. Can J Bot 82:291–296

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 Suppl):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MA, Callan NW, Fritz VA (1991) Seed treatments for disease control. Hortic Technol 1:84–87

    Google Scholar 

  • Bertus LS (1942) Plant pathology. Administration report, Directorate of Agriculture, Ceylon, 1941, p. 5

    Google Scholar 

  • Bhai RS, Kishore VK, Kumar A, Anandaraj M, Eapen SJ (2005) Screening of rhizobacterial isolates against soft-rot disease of ginger (Zingiber officinale Rosc). J Spices Aromat Crops 14:130–136

    Google Scholar 

  • Bhardwaj SS, Gupta PK, Dohroo NP, Shyam KR (1988) Biological control of rhizome rot of ginger in storage. Ind J Plant Pathol 6:56–58

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Chapter  Google Scholar 

  • Brahmanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of cu nanoparticles against Fusarium causing crop disease. Environ Chem Lett 14:229–235

    Article  CAS  Google Scholar 

  • Butler EJ (1907) An account of the genus Pythium and some Chytridiaceae. Memoirs of the Department of Agriculture, India. Bot Ser 1:1–162

    Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1991) Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. Hotrscience 26(9):1163–1165

    Google Scholar 

  • Chairat Y, Pasura A (2013) Isolation and identification of rhizobacteria having inhibitory capability on pathogenic fungi, Pythium sp. J Sci Technol Human 11:117–127

    Google Scholar 

  • Chakraborty P, Adikary J, Chatterjee S, Biswas B, Chattopadhyay T (2016) Facile synthesis of copper nanoparticles antibacterial and antifungal activity study. Rasayan J Chem 9:77–83

    CAS  Google Scholar 

  • Chase AR, Brunk DD, Tepper BL (1985) Fosetyl aluminum fungicide for controlling Pythium root rot of foliage plants. Proc Florida State Hortic Soc 95:119–122

    Google Scholar 

  • ChĂ©rif M, Menzies JG, Ehret DL, Bogdanoff C (1994) Yield of cucumber infected with Pythium aphanidermatum when grown with soluble silicon. Hortic Sci 29:896–897

    Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  PubMed  Google Scholar 

  • Dake GN (1995) Diseases of ginger (Zingiber officinale rose) and their management. J Spices Aromat Crops 4:40–48

    Google Scholar 

  • Dake GN, Edison S (1989) Association of pathogen with rhizome rot of ginger in Kerala. Indian Phytopath 42:116–119

    Google Scholar 

  • Das S, Biswapati M, Maity D, Raj SK (2002) Different techniques of seed treatment in the management of seedling disease of sugar beet. J Mycopathol Res 40:175–178

    Google Scholar 

  • Deshpande AS, Rhomane RB, Vaidya BK, JoshiRM HAS, Kulkarni BD (2008) Sulphur nanoparticles synthesis and characterization from H2S gas using novel biodegradable iron chelates in W/O micro emulsion. Nanoscale Res Lett 3:221–229

    Article  CAS  PubMed Central  Google Scholar 

  • Dhanik J, Arya N, Nand V (2017) A review on Zingiber officinale. J Pharmacogn Phytother 6:174–184

    CAS  Google Scholar 

  • Dohroo NP (1987) Pythium ultimum on ginger. Indian Phytopath 40:275

    Google Scholar 

  • Dohroo NP (2005) Diseases of ginger. In: Ravindran PN, Babu KN (eds) Ginger, the genus Zingiber. CRC Press, Boca Raton, FL, pp 305–340

    Google Scholar 

  • Dohroo NP, Gupta M (2014) Effect of bioagents on management of rhizome diseases, plant growth parameters and nematode population in ginger. Agric Sci Digest 34:41–44

    Article  Google Scholar 

  • Dohroo NP, Sharma SL (1986) Evaluation of fungicides for the control of rhizome rot of ginger in storage. Indian Phytopath 36:691–693

    Google Scholar 

  • Dohroo NP, Sharma SL, Bhardwaj SS (1984) Efficacy of soil applied fungitoxicants against rhizome rot of ginger. Indian J Plant Prot 12:59–60

    CAS  Google Scholar 

  • Dohroo NP, Kansal S, Mehta P, Ahluwalia N (2012) Evaluation of eco-friendly disease management practices against soft-rot of ginger caused by Pythium aphanidermatum. Plant Dis Res 27:1e5

    Google Scholar 

  • Dohroo NP, Kansal S, Ahluwalia N (2015) Studies on eco-farmer-friendly practices for management of soft-rot of ginger (Zingiber officinale). Indian Phytopathol 68:93–96

    Google Scholar 

  • Doshi A, Mathur S (1987) Symptomatology, interaction and management of rhizome rot of ginger. Xenobiotics 26:261–265

    Google Scholar 

  • Drojee SL (1986) Studies on rhizome rot of ginger in Udaipur. M.Sc. thesis, Sukhadia University, Udaipur, p 98

    Google Scholar 

  • El-Argawy E, Rahhal M, El-Korany K, Elshabrawy E, Eitahan R (2017) Efficacy of some nanoparticles to control dampping off and root rot of sugar beet in El-Behiera. Asian J Plant Pathol 11:35–37

    Article  Google Scholar 

  • El-Katatny MH, Gudelj M, Robra KH, Elnaghy MA, Gubitz GM (2001) Characterization of a chitinase and an endo-b-1,3- glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56:137–143

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA (2006) Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222

    Article  CAS  Google Scholar 

  • El-Tarabily KA, St J, Hardy GE, Sivasithamparam K, Hussein AM, Kurtböke DI (1997) The potential for the biological control of cavity-spot disease of carrots, caused by Pythium coloratum, by streptomycete and non-streptomycete actinomycetes. New Phytol 137:495–507

    Article  PubMed  Google Scholar 

  • Fenice M, Gooday GW (2006) Mycoparasitic actions against fungi and oomycetes by a strain (CCFEE 5003) of the fungus Lecanicillium muscarium isolated in Continental Antarctica. Ann Microbiol 56(1):1–6

    Article  Google Scholar 

  • Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55

    Article  CAS  PubMed  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs2016000204

    Article  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • FrĂłes A, Macrae A, Rosa J, Franco M, Souza R, Soares R, Coelho R (2012) Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinia sclerotiorum. J Microbiol 50:798–806

    Article  PubMed  CAS  Google Scholar 

  • Gajera H, Domadiya R, Patel S, Kapopara M, Golakiya B (2013) Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system – a review. Curr Res Microbiol Biotechnol 1:133–142

    Google Scholar 

  • Gautam J, Mainali RP (2016) Management of ginger rhizome fly (Calobata sp) and associated rhizome rot (Pythium sp.). World J Agric Res 4:128–131

    Google Scholar 

  • Gholve VM, Tatikundalwar VR, Suryawanshi AP, Dey U (2016) Effect of fungicides, plant extracts/botanicals and bioagents against damping off in brinjal. Afr J Microbiol Res 8:2835–2848

    Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state foreseen applications and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Kaushal M (2017) Diseases infecting ginger (Zingiber officinale Roscoe): a review. Agric Rev 38(1):15–28. https://doi.org/10.18805/ag.v0iOF.7305

    Article  Google Scholar 

  • Gupta SL, Paijwar MS, Rizvi G (2013) Biological management of rot disease of ginger (Zingiber officinale Rosc). Trends Biosci 6:302

    Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer, Cham, pp 247–266

    Chapter  Google Scholar 

  • Hagedorn C, Nelson N, Skwara JE (1990) Evaluation of a Pseudomonas fluorescens strain for repression of seedling disease. Virginia J Sci 41(4B):492–500

    Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Haware MP, Joshi LK (1974) Studies on soft-rot of ginger from Madhya Pradesh. Indian Phytopathology 27:158–161

    Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hoppe PE (1966) Pythium species still viable after 12 years in air-dried muck soil. Phytopathology 56:1411

    Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum. Canadian J Micro 29:321–324

    Article  CAS  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microb Interact 4:393–399

    Article  CAS  Google Scholar 

  • Hudge BV (2015) Management of damping-off disease of soybean caused by Pythium ultimum Trow. Int J Curr Microbiol App Sci 4:799–808

    CAS  Google Scholar 

  • Hwang SF, Gossen BD, Chang KF, Turnbull GD, Howard RJ (2001) Effect of seed damage and metalaxyl seed treatment on Pythium seedling blight and seed yield of field pea. Can J Plant Sci 81:509–517

    Article  CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 305–317

    Chapter  Google Scholar 

  • Jayaraj J, Radhakrishnan NV, Velazhahan R (2006) Development of formulations of Trichoderma harzianum strain M1 for control of damping-off of tomato caused by Pythium aphanidermatum. Arch Phytopathol Plant Prot 39:1–8

    Article  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 15:13–17

    Article  CAS  Google Scholar 

  • Kasprowicz MJ, KozioƂ M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  CAS  PubMed  Google Scholar 

  • Kavita PG, Thomas G (2008) Population genetic structure of the clonal plant Zingiber zerumbet (L) smith (Zingiberaceae) a wild relative of cultivated ginger and its response to Pythium aphanidermatum. Euphytica 160:89–100

    Article  Google Scholar 

  • Khatso K, Tiameren Ao N (2013) Biocontrol of rhizome rot disease of ginger (Zingiber officinale Rosc.). Int J Bio-Resour Stress Manag 4:317–321

    Google Scholar 

  • Kim JS, Kwon CS, Son KH (2000) Inhibition of α-glucosidase and amylase by luteolin, a flavonoid. Biosci Biotechnol Biochem 64:2458–2461

    Article  CAS  PubMed  Google Scholar 

  • Kipngeno P, Losenge T, Maina N, Kahangi E, Juma P (2015) Efficacy of Bacillus subtilis and Trichoderma asperellum against Pythium aphanidermatum in tomatoes. Biol Control 90:92–95

    Article  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99

    Article  CAS  Google Scholar 

  • Kulkarni S, Hegde YR (2002) Diseases of plantation crops and their management. Agrotech Publishing Academy, Udaipur, p 131

    Google Scholar 

  • Le DP, Smith M, Hudler GW, Aitken E (2014) Pythium soft-rot of ginger: detection and identification of the causal pathogens and their control. Crop Prot 65:153–167

    Article  Google Scholar 

  • Le DP, Smith MK, Aitken E (2016) An assessment of Pythium spp. associated with soft-rot disease of ginger (Zingiber officinale) in Queensland Australia. Australas Plant Pathol 45:377–387

    Article  Google Scholar 

  • Lee WH, Cheong SS, So IY (1990) Properties of suppressive and conducive soils to ginger rhizome rot. Kor J Plant Pathol 6:338–342

    Google Scholar 

  • Lin LT, Chang SS, Leu LS (1971) Soft-rot of ginger. Plant Protect Bull Taiwan 13:54–67

    Google Scholar 

  • Llorens E, AgustĂ­-Brisach C, GonzĂĄlez-HernĂĄndez AI, Troncho P, Vicedo B, Yuste T, Orero M, LedĂł C, GarcĂ­a-AgustĂ­n P, Lapeña L (2017) Bioassimilable sulphur provides effective control of Oidium neolycopersici in tomato enhancing the plant immune system. Pest Manag Sci 73(5):1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Loliam B, Morinaga T, Chaiyanan S (2013) Biocontrol of Pythium aphanidermatum by the cellulolytic actinomycetes Streptomyces rubrolavendulae S4. Sci Asia 39:584–590

    Article  Google Scholar 

  • Lumsden RD, Locke JC (1989) Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathology 79:361–366

    Article  Google Scholar 

  • Luong TM, Huynh LMT, Hoang HMT, Tesoriero LA, Burgess LW, Phan GHT, Davies P (2010) First report of Pythium root rot of chrysanthemum in Vietnam and control with metalaxyl drench. Aust Plant Dis Notes 5:51–54

    Article  Google Scholar 

  • Manjuntha SB, Biradar DP, Alandkantti YR (2016) Nanotechnology and its applications in agriculture. J Pharmacol Sci 29:1–13

    Google Scholar 

  • Mathur S, Thakore BL, Singh RB (1984) Effect of different fungicides on ginger rhizome rot pathogen and their effect on germination and rotting of rhizome. Indian J Mycol Plant Path 14:155–157

    CAS  Google Scholar 

  • Mathur K, Ram D, Poonia J, Lodha BC (2002) Integration of soil solarization and pesticides for management of rhizome rot of ginger. Indian Phytopath 55:345–347

    Google Scholar 

  • Mbarga JB, Hoopen GMT, Kuate J, Adiobo A, Ngonkeu MEL, Ambang Z, Akoa A, Tondje PR, Begoude BAD (2012) Trichoderma asperellum: a potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Protect 36:18e22

    Article  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Res Int 2015:473050. https://doi.org/10.1155/2015/473050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez E, Garcia-Fraile P (2017) Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol 3:502–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra VK (2010) In vitro antagonism of Trichoderma species against Pythium aphanidermatum. J Phytol 2:28–35

    Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:978–981

    Google Scholar 

  • Mitra M, Subramaniam LS (1928) Fruit rot diseases of cultivated Cucurbitaceous caused by Pythium aphanidermatum (Eds.) Fitz. Memorial Department of Agriculture India Botany 15:79–84

    Google Scholar 

  • Mohammady A, Abbas A (2017) Biological control of Pythium ultimum and Fusarium solani by indigenous strains Bacillus subtilis. Boil J microorg. https://www.academia.edu/32658977/Biological_control_of_Pythium_ultimum_and_Fusarium_solani_by_indigenous_strains_Bacillus_subtilis

  • Moreira SI, Dutra DC, Rodrigues AC, de Oliveira JR, Dhingra OD, Pereira OL (2013) Fungi and bacteria associated with post-harvest rot of ginger rhizomes in EspĂ­rito Santo Brazil. Trop Plant Pathol 38:218–226

    Google Scholar 

  • Mudyiwa RM, Chaibva P, Takawira M (2016) Evaluation of Trichoderma harzianum in controlling damping-off (Pythium spp.) on tomato (Solanum lycopersicum) seedling varieties. Ann Biol Res 7(6):6–11

    CAS  Google Scholar 

  • Muthukumar A, Eswaran A, Nakkeeran S, Sangeetha G (2010) Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping off. Crop Prot 29:1483–1488

    Article  Google Scholar 

  • Muthukumar A, Eswaran A, Sanjeevkumas K (2011) Exploitation of Trichoderma species on the growth of Pythium aphanidermatum in chilli. Braz J Microbiol 42:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naseby DC, Way JA, Bainton NJ, Lynch JM (2001) Biocontrol of Pythium in the pea rhizosphere by antifungal metabolite producing and non-producing Pseudomonas strains. J App Micro 90(3):421–429. https://doi.org/10.1046/j.1365-2672.2001.01260.x

    Article  CAS  Google Scholar 

  • Nayak SK, Nayak S, Mishra BB (2017) Antimycotic role of soil bacillus sp. against rice pathogens: a biocontrol prospective. In: Patra J, Vishnuprasad C, Das G (eds) Microbial biotechnology. Springer, Singapore

    Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag-SiO2 nanoparticles by Îł-irradiation and their antibacterial and antifungal efficiency against Salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275:228–233

    Article  CAS  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1, 3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  CAS  PubMed  Google Scholar 

  • Pandey M, Ahmad S, Khan KZ (2016) In Vitro evaluation of some antagonists and plant extracts against Pythium Aphanidermatum causes damping off of Chilli. Bioscan 11:879–884

    CAS  Google Scholar 

  • Parham BEV (1935) Annual report of general mycological and botanical work for 1934. Annual Bulletin Department of Agriculture, Fiji, 1935, pp 55–56

    Google Scholar 

  • Parizi MA, Moradpour Y, Roostaei A, KhaniM NM, Rahimi G (2014) Evaluation of the antifungal effect of magnesium oxide nanoparticles on Fusarium oxysporum f. sp. lycopersici pathogenic agent of tomato. Eur J Expt Biol 4:151–156

    CAS  Google Scholar 

  • Park M (1934) Report of the work of the mycological division. Annual report of Director of Agriculture, Ceylon, pp 126–133

    Google Scholar 

  • Park M (1935) Report of the work of the mycological division. Annual report of Director of Agriculture, Ceylon, pp 124–131

    Google Scholar 

  • Park M (1937) Report of the work of the mycological division. Annual report of Director of Agriculture, Ceylon, pp 20–21

    Google Scholar 

  • Parveen T, Sharma K (2014) Management of “Soft-rot” of ginger by botanicals. Int J Pharm Life Sci 5:3478–3484

    Google Scholar 

  • Patel MK, Kamat MN, Bhide VP (1949) Fungi of Bombay. Indian Phytopath 2:142–155

    Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agro nanotechnology for plant fungal disease management a review. Int J Microbiol Appl Sci 3:71–84

    Google Scholar 

  • Peng YH, Chou YJ, Liu YC et al (2017) Inhibition of cucumber Pythium damping-off pathogen with zoosporicidal biosurfactants produced by Bacillus mycoides. J Plant Dis Prot 124:481. https://doi.org/10.1007/s41348-017-0110-z

    Article  Google Scholar 

  • Ponmurugan P, Manjukarunagmbika K, Elango V, Gnamamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red root rot disease in tea plants. J Exp Nanosci 11:1019–1031

    Article  CAS  Google Scholar 

  • Pordesimo AN, Raymundo SA (1963) Rhizome rot of ginger and its control. Coffee Cocoa Res J 5:240

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments challenges and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb201701014

    Article  PubMed  PubMed Central  Google Scholar 

  • Quimio AJ, Chan HH (1979) Survival of Pseudomonas solanacearum in the rhizosphere of some weed and economic plant species. Philipp Phytopathol 15:108–121

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect’s pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle A, Paralikar P, Anasane N, Gade R, Ingle P (2018) Effective management of soft-rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 102:1–13. https://doi.org/10.1007/s00253-018-9145-8

    Article  CAS  Google Scholar 

  • Rajan PP, Gupta SR, Sarma YR, Jackson GVH (2002) Diseases of ginger and their control with Trichoderma harzianum. Indian Phytopathol 55:173–177

    CAS  Google Scholar 

  • Ram D, Mathur K, Lodha BC, Webster J (2000) Evaluation of resident biocontrol agents as seed treatments against ginger rhizome rot. Indian Phytopathol 53:450–454

    Google Scholar 

  • Ramachandran N, Dake GN, Sarma YR (1989) Effect of systemic fungicides on in vitro growth of Pythium aphanidermatum, the rhizome rot pathogen of ginger. Indian Phytopathol 42:463–465

    Google Scholar 

  • Ramy SY, Osama FA (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicillium expansum. Afr J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturina equalis. Phytopathogens 3:10471–10478

    CAS  Google Scholar 

  • Rathaiah Y (1987) Control of soft-rot of ginger with Ridomil. Pesticides 21:29–30

    CAS  Google Scholar 

  • Ravi A, Varghese S, Krishnankutty RE (2017) Biocontrol activity of the extract prepared from Zingiber zerumbet for the management of rhizome rot in Zingiber officinale caused by Pythium myriotylum. Arch Phytopathol Plant Protect 50:555–567

    Article  CAS  Google Scholar 

  • Ravindran PN, Babu N (eds) (2005) Ginger—the genus Zingiber. CRC Press, Boca Raton, p 310

    Google Scholar 

  • Reddy MN, Charitha Devi M, Sreedevi NV (2003) Biological control of rhizome rot of turmeric (Curcuma longa L.) caused by Fusarium solani. J Biol Control 17:193–195

    Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture synthesis and applications. Sci World J 2014:925494. https://doi.org/10.1155/2014/925494

    Article  CAS  Google Scholar 

  • Sabu R, Soumya KR, Radhakrishnan EK (2017) Endophytic Nocardiopsis sp. from Zingiber officinale with both antiphytopathogenic mechanisms and antibiofilm activity against clinical isolates. 3 Biotech 7(2). https://doi.org/10.1007/s13205-017-0735-4

  • Sahare KC, Asthana RP (1962) Rhizome rot of ginger and its control. Indian Phytopathol 15:77–78

    Google Scholar 

  • Sarma YR, Nambiar KKN, Brahma RN (1979) Studies on rhizome rot of ginger and its control. In Venkataram CS (ed) Proceedings of PLACROSYM_II. 1979, Indian Society of Plantation Crops, Central Plantation Crops Research Institute, Kasargod, Kerala, pp 386–397

    Google Scholar 

  • Sathiyabama M, Parthsarthy R (2016) Biological preparation of chitosan nanoparticale and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BP (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellem I, Triki MA, Elleuch L, Cheffi M, Chakchouk A, Smaoui S, Mellouli L (2017) The use of newly isolated Streptomyces strain TN258 as potential biocontrol agent of potato tubers leak caused by Pythium ultimum. J Basic Microbiol 57:393–401

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar R, Singh AK, Raja P (2013) Identification of potential Trichoderma sp. for management of rhizome rot of ginger in Arunachal Pradesh. Environ Ecol 31:67–70

    Google Scholar 

  • Sen TN (1930) Appendix I: IV Mycology: annual report of the Department of Agriculture. Assam 1929–39:57–59

    Google Scholar 

  • Shanmugam V, Gupta S, Dohroo NP (2013a) Selection of a compatible biocontrol strain mixture based on co-cultivation to control rhizome rot of ginger. Crop Prot 43:119–127

    Article  Google Scholar 

  • Shanmugam V, Thakur H, Kaur J, Gupta S, Rajkumar S, Dohroo NP (2013b) Genetic diversity of Fusarium spp. inciting rhizome rot of ginger and its management by PGPR consortium in the western Himalayas. Biol Conl 66:1–7

    Article  CAS  Google Scholar 

  • Sharan V, Sharma G, Yadav M, Choudhary MK, Shrma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  Google Scholar 

  • Sharma SL, Dohroo NP (1982) Efficacy of chemicals in controlling rhizome rot of ginger (Zingiber officinale Rosc.). In: Nair MK, Premkumar T, Ravindran PN, Sarma YR (eds) Proceedings of national seminar on Ginger and Turmeric Central Plantation Crops Research Institute, Kasargod, Kerala, 8–9 April 1980, Calicut, pp 120–122

    Google Scholar 

  • Shende SS, Gaikwad ND, Bansod SD (2016) Synthesis and evaluation of antimicrobial potential of copper nanoparticle against agriculturally important phytopathogens. Int J Biol Res 1(4):41–47

    Google Scholar 

  • Singh AK (2011) Management of rhizome rot caused by Pythium fusarium and Ralstonia spp. in ginger (Zingiber officinale) under natural field conditions. Indian J Agric Sci 81:268–270

    Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A Review. Afr J Agric Res 9:1265–1277

    Google Scholar 

  • Smith M, Abbas R (2011) Controlling Pythium and associated pests in ginger. RIRDC publication No. 11/128, Canberra

    Google Scholar 

  • Smitha M, Singh R (2014) Biocontrol of phytopathogenic fungi using mycolytic enzymes produced by rhizospheric bacteria of Cicer arietinum. Indian J Agric Biochem 27:215–218

    Google Scholar 

  • Srivastava LS (1994) Management of soft-rot of ginger in Sikkim. Plant Dis Res 9:146–149

    Google Scholar 

  • Stapleton JJ, Devay JE (1986) Soil solarization: a non-chemical approach for management of plant pathogens and pests. Crop Prot 5:190–198

    Article  Google Scholar 

  • Stirling GR, Turaganivalu U, Stirling AM, Lomavatu MF, Smith MK (2009) Rhizome rot of ginger (Zingiber officinale) caused by Pythium myriotylum in Fiji and Australia. Australas Plant Pathol 38:453–460

    Article  Google Scholar 

  • Suleiman M, Al Ali A, Hussein A, Hammouti B, Hadda TB, Warad I (2013) Sulfur nanoparticles: synthesis characterizations and their applications. J Mater Environ Sci 4:1029–1033

    CAS  Google Scholar 

  • Tahira P, Sharma K (2014) Phytochemical profiling of leaves and stem bark of Terminalia arjuna and Tecomella undulata. Int J Pharma Biosci 1:1–7

    Google Scholar 

  • Takahashi (1954) Pythium zingiberum. Ann Phytopathol Soc Jpn 18:115

    Article  Google Scholar 

  • Thakore BBL, Mathur S, Singh RB (1988) Effect of rhizome treatment with fungicides for economic control of rot. J Phytol Res 1:83–84

    Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013:762412. https://doi.org/10.1155/2013/762412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas KM (1938) Administration report of the government mycologist, Madras, 1937-38

    Google Scholar 

  • Thomashow L, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Plant-microbe interactions. Springer, Boston, pp 187–235. https://doi.org/10.1007/978-1-4613-1213-0_6

    Chapter  Google Scholar 

  • Uma T, Mannam S, Lahoti J, Devi K, Kale RD, Bagyaraj DJ (2012) Biocidal activity of seed extracts of fruits against soil borne bacterial and fungal plant pathogens. J Biopest 5:103–105

    Google Scholar 

  • Uppal BN (1940) Report of the department of agriculture. Bombay 1938–39:203–211

    Google Scholar 

  • Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016:1957612. https://doi.org/10.1155/2016/1957612

    Article  CAS  Google Scholar 

  • Vinayaka KS, Prashitha Kekuda TR, Noor Nawaz AS, Junaid S, Dileep N, Rakesh KN (2014) Inhibitory Activity of Usnea pictoides G.Awasthi (Parmeliaceae) Against Fusarium oxysporum F. Sp. Zingiberi and Pythium aphanidermatum isolated from Rhizome Rot of Ginger. Life Sci Leafl 49:17–22

    Google Scholar 

  • Vinayarani G, Prakash HS (2018) Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol 34:49. https://doi.org/10.1007/s11274-018-2431-x

    Article  CAS  PubMed  Google Scholar 

  • Wang PH, Chung CY, Lin YS, Yeh Y (2003) Use of polymerase chain reaction to detect the soft-rot pathogen Pythium myriotylum in infected ginger rhizomes. Lett Appl Microbiol 36:116–120

    Article  CAS  PubMed  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 02:40–44

    Google Scholar 

  • Whipps JM, Lumsden R (1991) Biological control of Pythium species. Biocontrol Sci Technol 1:75–90. https://doi.org/10.1080/09583159109355188

    Article  Google Scholar 

  • Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    Google Scholar 

  • Yacoub A, Gerbore J, Magnin N, Haidar R, Compant S, Rey P (2017) Transcriptional analysis of the interaction between the oomycete biocontrol agent, Pythium oligandrum, and the roots of Vitis vinifera L. Biol Control 120:26–35. https://doi.org/10.1016/j.biocontrol.2017.02.007

    Article  Google Scholar 

  • Yang KD, Kim HM, Lee WH, So IN (1988) Studies on rhizome rot of ginger caused by Fusarium oxysporum f. sp. zingiberi and Pythium zingiberum. Korean J Plant Pathol 4:271–277

    CAS  Google Scholar 

  • Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45:223. https://doi.org/10.1023/A:1009998304177

    Article  Google Scholar 

  • Zouari I, Jlaiel L, Tounsi S, Trigui M (2016) Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biol Control 100:54–62

    Article  CAS  Google Scholar 

Download references

Acknowledgement

MR is thankful to University Grants Commission, New Delhi for award of BSR faculty fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, M., GoliƄska, P., Shende, S., Paralikar, P., Ingle, P., Ingle, A.P. (2019). Biological Control of Soft-Rot of Ginger: Current Trends and Future Prospects. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_16

Download citation

Publish with us

Policies and ethics