Skip to main content

Mycorrhizae Resource Allocation in Root Development and Root Morphology

  • Chapter
  • First Online:
Plant Microbe Interface

Abstract

Plant root systems are influenced by genetics and environmental conditions which are leading to varied root system architectures. Different plant species have diverse root system architectures, and mineral nutrient availability is mainly determined by the root system. Also, the availability of mineral nutrient uptake is played by the role of mycorrhizal fungi. In this chapter, the role of plant root development, root architecture, and mycorrhizal inoculation on mineral nutrition was reviewed. The root development, mainly the physiological, morphological, and molecular responses of plant roots to diverse nutrient uptake in assistance to the mycorrhizal fungi, is one of the hot research areas for plant scientists and plant nutritionists. Keeping in mind the importance of this subject, the present chapter is compiled which covers the importance of nutrient uptake in plant growth and development. Moreover, the importance of roots in nutrient uptake and establishing the symbiotic relationship is essential. Underground relations are set up by the plant roots in coordination with different soil microorganisms. Arbuscular mycorrhizal fungi (AMF) as a major soil organism participate in symbiotic relationship and facilitate the plant in growth and root development. Moreover, it shapes the plant roots for the better cooperation with AMF in nutrient and water uptake facilitation. It may change the root morphology, physiology, and molecular behavior which may vary plant to plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arines J, Ballester A (1992) Mycorrhization of micropropagated Prunus avium L. plantlets. Micropropagation, root regeneration, and mycorrhizas Joint meeting between COST, Dijon, France, p 45

    Google Scholar 

  • Atkinson D (1992) Tree root development: the role of models in understanding the consequences of arbuscular endomycorrhizal infection. Agronomie 12:817–820

    Article  Google Scholar 

  • Atkinson D, Berta G, Hooker J (1994) Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators. In: Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Springer, Berlin

    Google Scholar 

  • Azcón-Aguilar C, Barcelo A, Vidal M, De La Vina G (1992) Further studies on the influence of mycorrhizae on growth and development of micropropagated avocado plants. Agronomie 12:837–840

    Article  Google Scholar 

  • Azcon-Aguilar C, Padilla I, Encina C, Azcon R, Barea J (1996) Mycorrhizal inoculation (Glomus deserticola) enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Novel biotechnological approaches to plant production: from sterile root to mycorrhizosphere Joint COST meeting, Pisa, Italy, p 21

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. https://doi.org/10.1093/jxb/eri197

    Article  CAS  PubMed  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Article  Google Scholar 

  • Black R, Tinker P (1977) Interaction between effects of vesicular–arbuscular mycorrhiza and fertiliser phosphorus on yields of potatoes in the field. Nature 267:510–511

    Article  CAS  Google Scholar 

  • Bolan N (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bouhired L, Gianinazzi S, Gianinazzi-Pearson V (1992) Influence of endomycorrhizal inoculation on the growth of Phoenix dactylifera. Micropropagation, root regeneration and mycorrhizas Joint meeting between Cost, Dijon, France, p 53

    Google Scholar 

  • Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible W-R, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant-Microbe Interact 23:915–926

    Article  CAS  PubMed  Google Scholar 

  • Branzanti B, Gianinazzi-Pearson V, Gianinazzi S (1992) Influence of phosphate fertilization on the growth and nutrient status of micropropagated apple infected with endomycorrhizal fungi during the weaning stage. Agronomie 12:841–845

    Article  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587

    Article  CAS  Google Scholar 

  • Cassells A, Mark G, Periappuram C (1996) Establishment of arbuscular mycorrhizal fungi in autotrophic strawberry cultures in vitro. Comparison with inoculation of microplants in vivo. Agronomie 16:625–632

    Article  Google Scholar 

  • Castillo C, Puccio F, Morales D, Borie F, Sieverding E (2012) Early arbuscular mycorrhiza colonization of wheat, barley and oats in Andosols of southern Chile. J Soil Sci Plant Nutr 12:511–524

    Google Scholar 

  • Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156:1131–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Ramirez A, Calderon-Vazquez C, Herrera-Estrella L (2009) Effect of nutrient availability on root system development. https://doi.org/10.1002/9781444310023.ch11

  • Davies FT, Calderón CM, Huaman Z, Gómez R (2005) Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru. Sci Hortic 106:318–329

    Article  CAS  Google Scholar 

  • Declerck S, Risede J-M, Delvaux B (2002) Greenhouse response of micropropagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi. Sci Hortic 93:301–309. https://doi.org/10.1016/S0304-4238(01)00347-8

    Article  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    Article  CAS  PubMed  Google Scholar 

  • Dolcet-Sanjuan R, Claveria E, Camprubi A, Estaun V, Calvet C (1996) Micropropagation of walnut trees (Juglans regia L) and response to arbuscular mycorrhizal inoculation. Agronomie 16:639–645

    Article  Google Scholar 

  • Douds DD Jr, Nagahashi G, Reider C, Hepperly PR (2007) Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biol Agric Hortic 25:67–78

    Article  Google Scholar 

  • Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93. https://doi.org/10.1016/s0167-8809(99)00031-6

    Article  Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    Article  CAS  Google Scholar 

  • Epstein E (1997) The science of composting. CRC Press LLC, Boca Ratón, FL

    Google Scholar 

  • Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Fageria NK, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. In: Sparks DL (ed) Advances in agronomy, vol 110. Elsevier Academic, San Diego

    Google Scholar 

  • Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3:1–8

    Article  Google Scholar 

  • Fester T, Kiess M, Strack D (2002) A mycorrhiza-responsive protein in wheat roots. Mycorrhiza 12:219–222

    Article  CAS  PubMed  Google Scholar 

  • Fiorilli V, Vallino M, Biselli C, Faccio A, Bagnaresi P, Bonfante P (2015) Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Front Plant Sci 6:636

    Article  PubMed  PubMed Central  Google Scholar 

  • Giri B, Prasad R, Varma A (2018) Root biology. Springer International Publishing (ISBN 978-3-319-75910-4) https://www.springer.com/us/book/9783319759098

  • Gutjahr C, Casieri L, Paszkowski U (2009) Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol 182:829–837

    Article  PubMed  Google Scholar 

  • He Y, Liao H, Yan X (2003) Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil 248:247–256

    Article  CAS  Google Scholar 

  • Hemsley AR, Poole I (2004) The evolution of plant physiology. Elsevier, London

    Google Scholar 

  • Hetrick B, Wilson G, Todd T (1996) Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can J Bot 74:19–25

    Article  CAS  Google Scholar 

  • Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26:209–214

    Article  PubMed  Google Scholar 

  • Hochholdinger F (2009) The maize root system: morphology, anatomy, and genetics. In: Handbook of maize: its biology. Springer, New York

    Google Scholar 

  • Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann Bot 93:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshyar Z, Abedi B, Ganji Moghadam E, Davari Nejad G (2017) Effect of arbuscular mycorrhiza on growth and physiological behavior of PHL-C rootstock. J Plant Physiol Breed 7:53–60

    Google Scholar 

  • Ilag LL, Rosales A, Elazegui F, Mew T (1987) Changes in the population of infective endomycorrhizal fungi in a rice-based cropping system. Plant Soil 103:67–73

    Article  Google Scholar 

  • Jaizme-Vega M, Rodríguez-Romero A, Hermoso CM, Declerck S (2003) Growth of micropropagated bananas colonized by root-organ culture produced arbuscular mycorrhizal fungi entrapped in Ca-alginate beads. Plant Soil 254:329–335

    Article  CAS  Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918

    Article  CAS  PubMed  Google Scholar 

  • Khan MH, Meghvansi M, Prasad K, Siddiqui S, Varma A (2017) Arbuscular mycorrhizal symbiosis and nutrient resource limitation: predicting the linkages and effectiveness of partnership. In: Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, Cham

    Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517. https://doi.org/10.1046/j.1469-8137.2000.00776.x

    Article  CAS  PubMed  Google Scholar 

  • Krishna H, Singh S, Minakshi PV, Khawale R, Deshmukh P, Jindal P (2006) Arbuscular-mycorrhizal fungi alleviate transplantation shock in micropropagated grapevine (Vitis vinifera L.). J Hortic Sci Biotechnol 81:259–263

    Article  Google Scholar 

  • Kungu JB, Lasco RD, Dela Cruz LU, Dela Cruz RE, Husain T (2008) Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of senna spectabilis. Pak J Bot 40:2217–2224

    Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103. https://doi.org/10.1016/j.tree.2007.10.008

    Article  PubMed  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31. https://doi.org/10.1007/s11104-010-0444-9

    Article  CAS  Google Scholar 

  • Li XL, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root soil and hyphae soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119:397–404

    Article  CAS  Google Scholar 

  • Li XL, George E, Marschner H, Zhang JL (1997) Phosphorus acquisition from compacted soil by hyphae of a mycorrhizal fungus associated with red clover (Trifolium pratense). Can J Bot Revue Canadienne De Botanique 75:723–729

    CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  CAS  Google Scholar 

  • Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21:1696–1707

    Article  PubMed  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58

    Article  CAS  PubMed  Google Scholar 

  • Manoharan P, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. Grown under different water stress conditions. Eur J Soil Biol 46:151–156

    Article  Google Scholar 

  • Marin M, Mari A, Ibarra M, Garcia-Ferriz L (2003) Arbuscular mycorrhizal inoculation of micropropagated persimmon plantlets. J Hortic Sci Biotechnol 78:734–738

    Article  Google Scholar 

  • Marschener H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crop Res 56:203–207

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of high plants. Academic, London

    Google Scholar 

  • Marschner H (1996) Mineral nutrient acquisition in nonmycorrhizal and mycorrhizal plants. Phyton Annales Rei Botanicae 36:61–68

    Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marschner H, Romheld V, Horst WJ, Martin P (1986) Root-induced changes in the rhizosphere – importance for the mineral-nutrition of plants. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 149:441–456

    Article  CAS  Google Scholar 

  • Mohammad MJ, Malkawi HI (2004) Root, shoot and nutrient acquisition responses of mycorrhizal and nonmycorrhizal wheat to phosphorus application to highly calcareous soils. Asian J Plant Sci 3:363–369

    Article  Google Scholar 

  • Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann E, George E (2010) Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Arbuscular mycorrhizas: physiology and function. Springer, Amsterdam

    Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots–an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  • Norman J, Atkinson D, Hooker J (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    Article  CAS  Google Scholar 

  • Ortas I (1997) Determination of the extent of rhizosphere soil. Commun Soil Sci Plant Anal 28:1767–1776. https://doi.org/10.1080/00103629709369914

    Article  CAS  Google Scholar 

  • Ortas I (2003) Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia. J Plant Nutr 26:1–17. https://doi.org/10.1081/pln-120016494

    Article  CAS  Google Scholar 

  • Ortas I (2012) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crop Res 125:35–48. https://doi.org/10.1016/j.fcr.2011.08.005

    Article  Google Scholar 

  • Ortas I (2015) Comparative analyses of Turkey agricultural soils: potential communities of indigenous and exotic mycorrhiza species’ effect on maize (Zea mays L.) growth and nutrient uptakes. Eur J Soil Biol 69:79–87. https://doi.org/10.1016/j.ejsobi.2015.05.006

    Article  Google Scholar 

  • Ortas I, Akpinar C (2011) Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. J Plant Nutr 34:970–987. https://doi.org/10.1080/01904167.2011.555580

    Article  CAS  Google Scholar 

  • Ortas I, Rafique M, Akpinar C, Aka Kacar Y (2017) Growth media and mycorrhizal species effect on acclimatization and nutrient uptake of banana plantlets. Sci Hortic 217:55–60

    Article  CAS  Google Scholar 

  • Pearson J, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481–488

    Article  CAS  Google Scholar 

  • Pinior A, Grunewaldt-Stöcker G, von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596

    Article  CAS  PubMed  Google Scholar 

  • Ponton F, Piche Y, Parent S, Caron M (1990) The use of vesicular-arbuscular mycorrhizae in Boston fern production: I. Effects of peat-based mixes. Hortscience 25:183–189

    Article  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam K, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Mycorrhiza-function, diversity, state of the art. Springer, Cham

    Google Scholar 

  • Pritchard SG, Rogers HH (2000) Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytol 147:55–71

    Article  CAS  Google Scholar 

  • Puthur JT, Prasad K, Sharmila P, Saradhi PP (1998) Vesicular arbuscular mycorrhizal fungi improves establishment of micropropagated Leucaena leucocephala plantlets. Plant Cell Tissue Organ Cult 53:41

    Article  Google Scholar 

  • Quatrini P, Gentile M, Carimi F, Pasquale FD, Puglia AM (2003) Effect of native arbuscular mycorrhizal fungi and Glomus mosseae on acclimatization and development of micropropagated Citrus limon (L.) Burm. J Hortic Sci Biotechnol 78:39–45

    Article  Google Scholar 

  • Rancillac M, Cadoux F, Leduc D, Kahane R (1996) Improvement of a protocol to establish in vitro arbuscular mycorrhizal strains with vitro bulbs of onion, Allium cepa L. Novel biotechnological approaches to plant production: from sterile root to mycorrhizosphere Joint COST meeting

    Google Scholar 

  • Rapparini F, Baraldi R, Bertazza G (1996) Growth and carbohydrate status of Pyrus communis L plantlets inoculated with Glomus sp. Agronomie 16:653–661

    Article  Google Scholar 

  • Rodríguez-Romero AS, Guerra MSP, Jaizme-Vega MDC (2005) Effect of arbuscular mycorrhizal fungi and rhizobacteria on banana growth and nutrition. Agron Sustain Dev 25:395–399

    Article  CAS  Google Scholar 

  • Rogers HH, Runion GB, Prior A (1999) Response of plants to elevated atmospheric CO2: root growth, mineral. Carbon dioxide and environmental stress, p 215

    Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, Pascale SD, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108. https://doi.org/10.1016/j.scienta.2015.09.002

    Article  Google Scholar 

  • Sbrana C, Vitagliano C, Avio L, Giovanneti M (1992) Influence of vesicular-arbuscular mycorrhizae on transplant stress of micropropagated apple and peach rootstocks. Micropropagation, root regeneration, and mycorrhizas Joint meeting between COST

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert A, Bodrino C, Gribaudo I (1992) Vesicular-arbuscular mycorrhizal inoculation of kiwifruit (Actinidia deliciosa) micropropagated plants. Agronomie 12:847–850

    Article  Google Scholar 

  • Sharma S, Sharma AK, Prasad R, Varma A (2017) Arbuscular mycorrhiza: a tool for enhancing crop production. In: Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, New York

    Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Root engineering. Springer, Berlin

    Google Scholar 

  • Singh S, Minakshi G, Khawale R, Patel V, Krishna H, Saxena A (2003) Mycorrhization as an aid for biohardening of in vitro raised Grape (Vitis vinifera L.) plantlets. VII International symposium on temperate zone fruits in the tropics and subtropics, p 662

    Google Scholar 

  • Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc B Biol Sci 367(1595):1441–1452

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, San Diego, CA

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solaiman M, Hirata H (1998) Glomus-wetland rice mycorrhizas influenced by nursery inoculation techniques under high fertility soil conditions. Biol Fertil Soils 27:92–96

    Article  Google Scholar 

  • Taylor J, Harrier LA (2001) A comparison of development and mineral nutrition of micropropagated Fragaria× ananassa cv. Elvira (strawberry) when colonised by nine species of arbuscular mycorrhizal fungi. Appl Soil Ecol 18:205–215

    Article  Google Scholar 

  • Teotia P, Kumar M, Prasad R, Kumar V, Tuteja N, Varma A (2017) Mobilization of micronutrients by mycorrhizal fungi. Mycorrhiza-function, diversity, state of the art. Springer, Cham

    Google Scholar 

  • Tingey DT, Phillips DL, Johnson MG (2000) Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytol 147:87–103

    Article  CAS  Google Scholar 

  • Uosukainen M, Vestberg M (1997) Timing of AMF inoculation to microcuttings of crab apple cv. Marjatta. COST Action 821: arbuscular mycorrhizas in sustainable soil-plant systems: report of 1996 activities

    Google Scholar 

  • Upadhyaya CP, Gururani MA, Prasad R, Varma A (2013) A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca+2 signaling pathway and lipoxygenase gene. Appl Biochem Biotechnol 170(4):743–755

    Article  CAS  PubMed  Google Scholar 

  • Vallino M, Fiorilli V, Bonfante P (2014) Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell Environ 37:557–572

    Article  CAS  PubMed  Google Scholar 

  • Vance CP (2010) Quantitative trait loci, epigenetics, sugars, and microRNAs: quaternaries in phosphate acquisition and use. Plant Physiol 154:582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017) Mycorrhiza: nutrient uptake, biocontrol, ecorestoration. Springer International Publishing (ISBN: 978-3-319-68867-1) http://www.springer.com/us/book/9783319688664

  • Vidal M, Azcón-Aguilar C, Barea J, Pliego-Alfaro F (1992) Mycorrhizal inoculation enhances growth and development of micropropagated plants of avocado. Hortscience 27:785–787

    Article  Google Scholar 

  • Volkmar K (1997) Water stressed nodal roots of wheat: effects on leaf growth. Funct Plant Biol 24:49–56

    Article  Google Scholar 

  • Wang B, Tang X, Cheng L, Zhang A, Zhang W, Zhang F, Liu J, Cao Y, Allan D, Vance C (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Wirsel SG (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    Article  CAS  PubMed  Google Scholar 

  • Wu Q-S, Zou Y-N, He X-H (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Article  CAS  Google Scholar 

  • Wu F, Wang W, Ma Y, Liu Y, Ma X, An L, Feng H (2013) Prospect of beneficial microorganisms applied in potato cultivation for sustainable agriculture. Afr J Microbiol Res 7:2150–2158

    Article  Google Scholar 

  • Wu Q-S, Srivastava A, Zou Y-N, Malhotra S (2017a) Mycorrhizas in citrus: beyond soil fertility and plant nutrition. Indian J Agric Sci 87:427–443

    CAS  Google Scholar 

  • Wu QS, Sun P, Srivastava AK (2017b) AMF diversity in citrus rhizosphere. Indian J Agric Sci 87:653–656

    CAS  Google Scholar 

  • Yao M, Tweddell R, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Song F, Liu S, Liu F (2016) Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2. J Agron Crop Sci 202:486–496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ortaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortaş, I., Rafique, M., Iqbal, M.T. (2019). Mycorrhizae Resource Allocation in Root Development and Root Morphology. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_1

Download citation

Publish with us

Policies and ethics