Skip to main content

CrossEncoder: Towards 3D-Free Depth Face Recovery and Fusion Scheme for Heterogeneous Face Recognition

  • Conference paper
  • First Online:
Representations, Analysis and Recognition of Shape and Motion from Imaging Data (RFMI 2017)

Abstract

As a worthwhile trade-off between fully 2D and fully 3D based face recognition (FR), 2D/3D asymmetric face recognition has recently emerged which involves matching two face representations from these two alternative modalities. Different from most previous work which rely on accurately registered 3D face templates, we address this issue by proposing a novel multi-task deep convolutional neural network (CNN) architecture based on 2.5D images. With an autoencoder-like pipeline and a specially formulated criterion, our approach is capable of parallelizing real-time 2.5D face image reconstruction and discriminative face feature extraction. Further, through both qualitative and quantitative experiments on commonly used FRGC 2D/3D face database, we demonstrate that our framework could achieve satisfactory performance on both tasks while being drastically efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UHDB11 face database (2009).http://cbl.uh.edu/URxD/datasets/

  2. PittPatt face recognition software development kit (PittPatt SDK) v5.2 (2011)

    Google Scholar 

  3. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1859–1866 (2014)

    Google Scholar 

  4. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  5. Chowdhury, A.R., Chellappa, R., Krishnamurthy, S., Vo T.: 3D face reconstruction from video using a generic model. In: Proceedings of 2002 IEEE International Conference on Multimedia and Expo, ICME 2002, vol. 1, pp. 449–452. IEEE (2002)

    Google Scholar 

  6. Gu, L., Kanade, T.: 3D alignment of face in a single image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 1305–1312. IEEE (2006)

    Google Scholar 

  7. Huang, D., Ardabilian, M., Wang, Y., Chen, L.: Oriented gradient maps based automatic asymmetric 3D–2D face recognition. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 125–131. IEEE (2012)

    Google Scholar 

  8. Jin, Y., Cao, J., Ruan, Q., Wang, X.: Cross-modality 2D–3D face recognition via multiview smooth discriminant analysis based on ELM. J. Electr. Comput. Eng. 2014, 21 (2014)

    Google Scholar 

  9. Kakadiaris, I.A., et al.: 3D–2D face recognition with pose and illumination normalization. Comput. Vis. Image Underst. 154, 137–151 (2016)

    Article  Google Scholar 

  10. Kemelmacher-Shlizerman, I., Basri, R.: 3D face reconstruction from a single image using a single reference face shape. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 394–405 (2011)

    Article  Google Scholar 

  11. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598. IEEE (2013)

    Google Scholar 

  12. Li, S.Z.: Encyclopedia of Biometrics: I–Z, vol. 1. Springer, Heidelberg (2009)

    Book  Google Scholar 

  13. Liu, F., Zeng, D., Zhao, Q., Liu, X.: Joint face alignment and 3D face reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 545–560. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_33

    Chapter  Google Scholar 

  14. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  15. Matthews, I., Xiao, J., Baker, S.: 2D vs. 3D deformable face models: Representational power, construction, and real-time fitting. Int. J. Comput. Vis. 75(1), 93–113 (2007)

    Article  Google Scholar 

  16. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts (2016). http://distill.pub/2016/deconv-checkerboard/

  17. Phillips, P.J.: Overview of the face recognition grand challenge. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 947–954. IEEE (2005)

    Google Scholar 

  18. Riccio, D., Dugelay, J.-L.: Geometric invariants for 2D/3D face recognition. Pattern Recognit. Lett. 28(14), 1907–1914 (2007)

    Article  Google Scholar 

  19. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 833–840 (2011)

    Google Scholar 

  20. Savran, A., et al.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_6

    Chapter  Google Scholar 

  21. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  22. Toderici, G., et al.: Bidirectional relighting for 3D-aided 2D face recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2721–2728. IEEE (2010)

    Google Scholar 

  23. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising auto encoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  24. Wang, X., Ly, V., Guo, R., Kambhamettu, C.: 2D–3D face recognition via restricted Boltzmann machines. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 574–580. IEEE (2014)

    Google Scholar 

  25. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  26. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR 2006), pp. 211–216. IEEE (2006)

    Google Scholar 

  27. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  28. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International Conference on Computer Vision, pp. 2018–2025. IEEE (2011)

    Google Scholar 

  29. Zhang, W., Huang, D., Wang, Y., Chen, L.: 3D aided face recognition across pose variations. In: Zheng, W.-S., Sun, Z., Wang, Y., Chen, X., Yuen, P.C., Lai, J. (eds.) CCBR 2012. LNCS, vol. 7701, pp. 58–66. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35136-5_8

    Chapter  Google Scholar 

  30. Zhao, X., et al.: Benchmarking asymmetric 3D–2D face recognition systems. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Chen, L. (2019). CrossEncoder: Towards 3D-Free Depth Face Recovery and Fusion Scheme for Heterogeneous Face Recognition. In: Chen, L., Ben Amor, B., Ghorbel, F. (eds) Representations, Analysis and Recognition of Shape and Motion from Imaging Data. RFMI 2017. Communications in Computer and Information Science, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-030-19816-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19816-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19815-2

  • Online ISBN: 978-3-030-19816-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics