Skip to main content

Brenier Approach for Optimal Transportation Between a Quasi-discrete Measure and a Discrete Measure

  • Conference paper
  • First Online:
Book cover Representations, Analysis and Recognition of Shape and Motion from Imaging Data (RFMI 2017)

Abstract

Correctly estimating the discrepancy between two data distributions has always been an important task in Machine Learning. Recently, Cuturi proposed the Sinkhorn distance [1] which makes use of an approximate Optimal Transport cost between two distributions as a distance to describe distribution discrepancy. Although it has been successfully adopted in various machine learning applications (e.g. in Natural Language Processing and Computer Vision) since then, the Sinkhorn distance also suffers from two unnegligible limitations. The first one is that the Sinkhorn distance only gives an approximation of the real Wasserstein distance, the second one is the ‘divide by zero’ problem which often occurs during matrix scaling when setting the entropy regularization coefficient to a small value. In this paper, we introduce a new Brenier approach for calculating a more accurate Wasserstein distance between two discrete distributions, this approach successfully avoids the two limitations shown above for Sinkhorn distance and gives an alternative way for estimating distribution discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Curse_of_dimensionality.

  2. 2.

    Here \(\mathbf {1}_d\) is a d-dimensional column vector of ones.

References

  1. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  2. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(Mar), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Gu, X., Luo, F., Sun, J., Yau, S.-T.: Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Ampere equations. arXiv preprint arXiv:1302.5472 (2013)

  4. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Chen, L., Saidi, A., Gu, X. (2019). Brenier Approach for Optimal Transportation Between a Quasi-discrete Measure and a Discrete Measure. In: Chen, L., Ben Amor, B., Ghorbel, F. (eds) Representations, Analysis and Recognition of Shape and Motion from Imaging Data. RFMI 2017. Communications in Computer and Information Science, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-030-19816-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19816-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19815-2

  • Online ISBN: 978-3-030-19816-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics