Skip to main content

Abstract

The paper studies the relationship between principal stresses, curvature radii and shell thinning during superplastic forming of sphere-shaped domes from sheet blanks of several Al-Mg alloys and Sn-38% Pb alloy, which is the basis for refining the calculations of the power characteristics of the process. When using the Lame’s superellipse to describe the curvature of the shells, it was established that the principal stresses, especially the tangential stress, depend on the principal curvature radii. It is shown that the intensity of stresses also depends on the thinning of the shells during superplastic forming. It is revealed that the higher the level of superplastic properties of the material of the blank, the less the principal stresses and effective stresses depend on the difference between the principal radii of curvature. It has been established that when calculating the power mode of superplastic forming of shells, it is unacceptable the assumption of uniform thinning of the blank during forming, since the calculation error can reach 130%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giuliano, G.: Superplastic Forming of Advanced Metallic Materials: Method and Applications, 377 p. Woodhead Publishing Ltd., Oxford, Cambridge, Philadelphia, New Delhi (2011)

    Chapter  Google Scholar 

  2. Zakhariev, I.Y., Aksenov, S.A.: Influence of a material rheological characteristics on the dome thickness during free bulging test. J. Chem. Technol. Metall. 52(5), 1002–1007 (2017)

    Google Scholar 

  3. Barnes, A.J.: Superplastic forming 40 years and still growing. J. Mater. Eng. Perform. 22(10), 2935–2949 (2013). https://doi.org/10.1007/s11665-013-0727-4

    Article  Google Scholar 

  4. Puzyr, R., Haikova, T., Majerník, J., Karkova, M., Kmec, J.: Experimental study of the process of radial rotation profiling of wheel rims resulting in formation and technological flattening of the corrugations. Manuf. Technol. 18(1), 106–111 (2018). https://doi.org/10.21062/ujep/61.2018/a/1213-2489/MT/18/1/106

    Article  Google Scholar 

  5. Puzyr, R., Kukhar, V., Maslov, A., Shchipkovsky, Y.: The development of the method for the calculation of the shaping force in the production of vehicle wheel rims. Int. J. Eng. Technol. (UAE) 7(4.3), 30–34 (2018). https://doi.org/10.14419/ijet.v7i4.3.20128

    Article  Google Scholar 

  6. Anishchenko, A.S., Andryushchenko, A.P.: Rotary flaring of faceted flairs on pipe blanks. Sov. Eng. Res. 5, 54–55 (1991)

    Google Scholar 

  7. Orlov, G.A., Kotov, V.V., Orlov, A.G.: Simulation of the behavior of pipes with variable wall thickness under internal pressure. Metallurgist 61(1–2), 106–110 (2017). https://doi.org/10.1007/s11015-017-0461-5

    Article  Google Scholar 

  8. Pereira, D.A., Batalha, M.H.F., Carunchio, A.F., Resende, H.B.: An analysis of superplastic forming to manufacture aluminum and titanium alloy components. Revista IPT: Tecnologia e Inovação 1(3), 63–73 (2016)

    Google Scholar 

  9. Smyrnov, Y., Belevitin, V., Skliar, V., Orlov, G.: Physical and computer modeling of a new soft reduction process of continuously cast blooms. J. Chem. Technol. Metall. 50(6), 589–594 (2015)

    Google Scholar 

  10. Kitaeva, D., Kodzhaspirov, G., Rudaev, Y.: On the dynamic superplasticity. Mater. Sci. Forum 879, 960–965 (2017). https://doi.org/10.4028/www.scientific.net/MSF.879.960

    Article  Google Scholar 

  11. Kitaeva, D.A., Rudaev, Y.I.: On the threshold stress in superplasticity. Tech. Phys. 59(11), 1616–1619 (2014). https://doi.org/10.1134/S1063784214110127

    Article  Google Scholar 

  12. Moroz, M., Korol, S., Chernenko, S., Boiko, Y., Vasylkovskyi, O.: Driven camshaft power mechanism of the vehicle diesel engine fuel pump. Int. J. Eng. Technol. (UAE) 7(4.3), 135–139 (2018). https://doi.org/10.14419/ijet.v7i4.3.19723

    Article  Google Scholar 

  13. Markov, O.E., Perig, A.V., Markova, M.A., Zlygoriev, V.N.: Development of a new process for forging plates using intensive plastic deformation. Int. J. Adv. Manuf. Technol. 83(9–12), 2159–2174 (2016). https://doi.org/10.1007/s00170-015-8217-5

    Article  Google Scholar 

  14. Kukhar, V., Artiukh, V., Prysiazhnyi, A., Pustovgar A.: Experimental research and method for calculation of “upsetting-with-buckling” load at the impression-free (Dieless) preforming of workpiece. E3S Web Conf. 33, 02031 (2018). https://doi.org/10.1051/e3sconf/20183302031

    Article  Google Scholar 

  15. Aksenov, S., Sorgente, D.: Characterization of stress-strain behavior of superplastic titanium alloy by free bulging tests with pressure jumps. Defect Diffus. Forum 385, 443–448 (2018). https://doi.org/10.4028/www.scientific.net/DDF.385.443

    Article  Google Scholar 

  16. Ganesh, P., Senthil Kumar, V.S.: Finite element simulation in superplastic forming of friction stir welded aluminium alloy 6061-T6. Int. J. Integr. Eng. 3(1), 9–16 (2011)

    Google Scholar 

  17. Efremenko, V.G., Shimizu, K., Pastukhova, T.V., Chabak, Yu.G., Kusumoto, K., Efremenko, A.V.: Effect of bulk heat treatment and plasma surface hardening on the microstructure and erosion wear resistance of complex-alloyed cast irons with spheroidal vanadium carbides. J. Frict. Wear 38(1), 58–64 (2017). https://doi.org/10.3103/S1068366617010056

    Article  Google Scholar 

  18. Anishchenko, A., Kukhar, V., Artiukh, V., Arkhipova, O.: Application of G. Lame’s and J. Gielis’ formulas for description of shells superplastic forming. MATEC Web Conf. 238, 06007 (2018). https://doi.org/10.1051/matecconf/201823906007

    Article  Google Scholar 

  19. Anishchenko, O.S., Kukhar, V.V., Grushko, A.V., Vishtak, I.V., Prysiazhnyi, A.H., Balalayeva, E.Yu.: Analysis of the sheet shell’s curvature with lame’s superellipse method during superplastic forming. Mater. Sci. Forum 945, 531–537 (2019). https://doi.org/10.4028/www.scientific.net/MSF.945.531

    Article  Google Scholar 

  20. Anishchenko, A., Kukhar, V., Artiukh, V., Arkhipova, O.: Superplastic forming of shells from sheet blanks with thermally unstable coatings. MATEC Web Conf. 238, 06006 (2018). https://doi.org/10.1051/matecconf/201823906006

    Article  Google Scholar 

  21. Shats’kyi, I.P.: Closure of a longitudinal crack in a shallow cylindrical shell in bending. Mater. Sci. 41(2), 186–191 (2005). https://doi.org/10.1007/s11003-005-0149-z

    Article  Google Scholar 

  22. Jovane, F.: An approximate analysis of the superplastic forming of a thin circular diaphragm. Int. J. Mech. Sci. 10(5), 405–427 (1968). https://doi.org/10.1016/0020-7403(68)90005-2

    Article  Google Scholar 

  23. Kim, Y.H., Lee, J.M., Hong, S.S.: Optimal design of superplastic forming processes. J. Mater. Process. Technol. 112(2–3), 167–173 (2001). https://doi.org/10.1016/s0924-0136(00)00880-3

    Article  Google Scholar 

  24. Abhijit, Dutta: Thickness-profiling of initial blank for superplastic forming of uniformly thick domes. Mater. Sci. Eng. A. 371(1–2), 79–81 (2004). https://doi.org/10.1016/S0921-5093(03)00632-4

    Article  Google Scholar 

  25. Lechten, J.-P., Patrat, J.-P., Baudelet, B.: Analyses theorique et experimentale du gonflement dans le domaine de superplasticite. Revue de Physique Appliquee 12(1), 7–14 (1977). https://doi.org/10.1051/rphysap:019770012010700

    Article  Google Scholar 

  26. Vitu, L., Boudeau, N., Malecot, P., Michel, G., Buteri, A.: Comparaison de trois modeles pour le post-traitment de mesures issues du test de gonflement libre de tubes. 22-ème Congrès Français de Mécanique, Lyon, 24 au 28 Août 2015, pp. 67–78 (2015). (in French)

    Google Scholar 

  27. Anishchenko, A.S., Feofanov, YuV, Bogun, A.B.: Hot expansion of precise ring forgings. Chem. Pet. Eng. 11, 33–35 (1992)

    Google Scholar 

  28. Kukhar, V., Balalayeva, E., Nesterov, O.: Calculation method and simulation of work of the ring elastic compensator for sheet-forming. MATEC Web Conf. 129, 01041 (2017). https://doi.org/10.1051/matecconf/201712901041

    Article  Google Scholar 

  29. Balalayeva, E., Artiukh, V., Kukhar, V., Tuzenko, O., Glazko, V., Prysiazhnyi, A., Kankhva, V.: Researching of the stress-strain state of the open-type press frame using of elastic compensator of errors of “Press-Die” system. In: Advances in Intelligent Systems and Computing, vol. 692, pp. 220–235 (2018). https://doi.org/10.1007/978-3-319-70987-1_24

    Google Scholar 

  30. Sadowsky, A.J., Rotter, A.M.: Exploration of novel geometric imperfection forms in buckling failures of thin-walled metal silos under eccentric discharge. Int. J. Solids Struct. 50(5), 781–794 (2012). https://doi.org/10.1016/j.ijsolstr.2012.11.017

    Article  Google Scholar 

  31. Deshmukh, P.V.: Study of superplastic forming process using finite element analysis. University of Kentucky Master’s theses. Paper 367, 82 p. (2003). http://uknowledge.uky.edu/gradschool_theses/367

  32. Grebenisan, G., Bogdan, S.: Parameterized finite element analysis of a superplastic forming process, using Ansys®. MATEC Web Conf. 126, 03001 (2017). https://doi.org/10.1051/matecconf/201712603001

    Article  Google Scholar 

  33. Radyuk, A.G., Gorbatyuk, S.M., Gerasimova, A.A.: Use of electric-arc metallization to recondition the working surfaces of the narrow walls of thick-walled slab molds. Metallurgist 55(5–6), 419–423 (2011). https://doi.org/10.1007/s11015-011-9446-y

    Article  Google Scholar 

  34. Levandovskiy, A.N., Melnikov, B.E., Shamkin, A.A.: Modeling of porous material fracture. Mag. Civ. Eng. 1, 3–22 (2017). https://doi.org/10.18720/MCE.69.1

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR according to the research project №19-08-01252a “Development and verification of inelastic deformation models and thermal fatigue fracture criteria for monocrystalline alloys”. The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Anishchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anishchenko, O., Kukhar, V., Artiukh, V., Trebukhin, A., Zotkina, N. (2020). Effect of Blank Curvature and Thinning on Shell Stresses at Superplastic Forming. In: Murgul, V., Pasetti, M. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018 2018. Advances in Intelligent Systems and Computing, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-030-19756-8_77

Download citation

Publish with us

Policies and ethics