Skip to main content

Abstract

The insulation of buildings in summer requires to exploit the heat capacity of materials in order to delay the heat transfer through the building structure. Phase change materials (PCM) installed in buildings can reduce the indoor temperature; however, given their high cost, their use must be evaluated carefully. This paper investigates the structures that can be coupled with PCM efficaciously, and it highlights some problems that could be caused by PCMs. The investigation has been performed numerically by means of the Energy-Plus software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asdrubali, F., D’Alessandro, F., Schiavoni, S.: A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1–17 (2015)

    Google Scholar 

  2. Scamoni, F., Piana, E.A., Scrosati, C.: Experimental evaluation of the sound absorption and insulation of an innovative coating through different testing methods. Build. Acoust. 24, 173–191 (2017)

    Article  Google Scholar 

  3. Donini, A., Spezie, R., Cortina, R., Piana, E.A., Turri, R.: Accurate prediction of the corona noise produced by overhead transmission lines. In: AEIT 2016 - International Annual Conference: Sustainable Development in the Mediterranean Area, Energy and ICT Networks of the Future. Institute of Electrical and Electronics Engineers Inc., Capri, Naples, Italy (2017)

    Google Scholar 

  4. Kolcunová, I., Pavlík, M., Beňa, L., Čonka, Z., Ilenin, S., et al.: Influence of electromagnetic shield on the high frequency electromagnetic field penetration through the building material. Acta Phys. Pol., A 131, 1135–1137 (2017)

    Article  Google Scholar 

  5. Svenfelt, A., Engström, R., Svane, O.: Decreasing energy use in buildings by 50% by 2050—a backcasting study using stakeholder groups. Technol. Forecast. Soc. Chang. 78, 785–796 (2011)

    Article  Google Scholar 

  6. Sait, H.H.: Auditing and analysis of energy consumption of an educational building in hot and humid area. Energy Conversation Manage. 66, 143–152 (2013)

    Article  Google Scholar 

  7. Singh, M.K., Mahapatra, S., Teller, J.: An analysis on energy efficiency initiatives in the building stock of Liege Belgium. Energy Pol. 62, 729–741 (2013). https://doi.org/10.1016/j.enpol.2013.07.138

    Article  Google Scholar 

  8. Dall’O’, G., Galante, A., Torri, M.: A methodology for the energy performance classification of residential building stock on an urban scale. Energy Build. 48, 211–219 (2012)

    Article  Google Scholar 

  9. Benedetti, M., Gervasio, P., Luscietti, D., Pilotelli, M., Lezzi, A.M.: Point thermal transmittance of rib intersections in concrete sandwich wall panels. Heat Transf. Eng. 1–10 (2018)

    Google Scholar 

  10. Luscietti, D., Gervasio, P., Lezzi, A.M.: Computation of linear transmittance of thermal bridges in precast concrete sandwich panels. J. Phys. Conf. Ser. 547, 012014 (2014)

    Article  Google Scholar 

  11. Dedé A., Della Giustina D., Massa G., Pasetti M., Rinaldi S.: A smart PV module with integrated electrical storage for smart grid applications. In: IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), pp. 895–900 (2016)

    Google Scholar 

  12. Marchi, B., Zanoni, S., Pasetti, M.: A techno-economic analysis of Li-ion battery energy storage systems in support of PV distributed generation. In: 21st Summer School Francesco Turco of Industrial Systems Engineering, pp. 45–149 (2016)

    Google Scholar 

  13. Neri, M., Luscietti, D., Pilotelli, M.: Computing the exergy of solar radiation from real radiation data. J. Energy Resour. Technol. 139, 061201 (2017)

    Article  Google Scholar 

  14. Pons, M.: Exergy analysis of solar collectors, from incident radiation to dissipation. Renew. Energy 47, 194–202 (2012)

    Article  Google Scholar 

  15. Elarga, H., Fantucci, S., Serra, V., Zecchin, R., Benini, E.: Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space, Energy Build. 150, 546–557 (2017)

    Article  Google Scholar 

  16. Khudhair, A.M., Farid, M.M.: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manage. 45, 263–275 (2004)

    Article  Google Scholar 

  17. Abhat, A.: Low temperature latent heat thermal energy storage. Heat storage materials. Sol. Energy 30, 313–323 (1983)

    Article  Google Scholar 

  18. Tyagi, V.V., Buddhi, D.: PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy Rev. 11, 1146–1166 (2007)

    Article  Google Scholar 

  19. Farid, M.: A review on energy storage with phase changes. In: Proceedings of Chicago/Midwest Renewable Energy Workshop, Chicago, USA (2001)

    Google Scholar 

  20. Neeper, D.A.: Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000)

    Article  Google Scholar 

  21. Waqas, A., Din, Z.U.: Phase change material (PCM) storage for free cooling of buildings - a review. Renew. Sustain. Energy Rev. 18, 607–625 (2013)

    Article  Google Scholar 

  22. Stritih, U., Butala, V.: Experimental investigation of energy saving in buildings with PCM cold storage. Int. J. Refrig. 33, 1676–1683 (2010)

    Article  Google Scholar 

  23. Serrano, S., Barreneche, C., Navarro, A., Haurie, L., Fernandez, A.I., Cabeza, L.F.: Use of multi-layered PCM gypsums to improve fire response. Phys. Therm. Mech. Charact. Energy Build. 127, 1–9 (2016)

    Article  Google Scholar 

  24. Kontogeorgos, D.A., Semitelos, G.K., Mandilaras, I.D., Founti, M.A.: Experimental investigation of the fire resistance of multi-layer drywall systems incorporating Vacuum Insulation Panels and Phase Change Materials. Fire Saf. J. 81, 8–16 (2016)

    Article  Google Scholar 

  25. Neri, M., Pilotelli, M.: Data on temperature-time curves measured at chimney-roof penetration. Data Brief 20, 306–315 (2018)

    Article  Google Scholar 

  26. Neri, M., Luscietti, D., Bani, S., Fiorentino, A., Pilotelli, M.: Analysis of the temperatures measured in very thick and insulating roofs in the vicinity of a chimney. J. Phys: Conf. Ser. 655, 012019 (2015). conference 1

    Google Scholar 

  27. Neri, M., Luscietti, D., Fiorentino, A., Pilotelli, M.: Statistical approach to estimate the temperature in chimney roof penetration. Fire Technol. 54, 395–417 (2018)

    Article  Google Scholar 

  28. Ferrari, P.: Influence of phase change materials (PCM) on thermal behavior of residential buildings, University of Brescia, Master Thesis (2014). (in Italian)

    Google Scholar 

  29. Fraunhofer ISE. https://www.enargus.de. Accessed 10 Dec 2018

  30. UNI 6946: Building components and building elements - Thermal resistance and thermal transmittance - Calculation method (2007)

    Google Scholar 

  31. http://phasechange.com.au/. Accessed 20 Jan 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Neri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neri, M., Ferrari, P., Luscietti, D., Pilotelli, M. (2020). Computational Analysis of the Influence of PCMs on Building Performance in Summer. In: Murgul, V., Pasetti, M. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018 2018. Advances in Intelligent Systems and Computing, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-030-19756-8_1

Download citation

Publish with us

Policies and ethics