Skip to main content

Technology Supporting Student Self-Assessment in the Field of Functions—A Design-Based Research Study

  • Chapter
  • First Online:
Technology in Mathematics Teaching

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 13))

Abstract

The focus of this chapter is the development of an electronic tool for formative self-assessment of functional thinking (SAFE) in a design-based research study. The digital tool aims to allow students to self-assess their work, rather than having technology evaluate their answers. Thus, the SAFE tool provides learners with a list of criteria against which they can check their solutions to an open assessment task, in this case, one which requires the learner to draw a graph based on a given situation. Two case studies in form of task-based interviews with sixteen-year-old students are described. The analysis leads to the reconstruction of the learners’ formative assessment processes by using a theoretical framework developed in the EU-project FaSMEd. The results show which formative assessment strategies students actively use when working with the self-assessment tool and which functionalities of the technology support the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldon, G., Cusi, A., Morselli, F., Panero, M., & Sabena, C. (2017). Formative assessment and technology: Reflections developed through the collaboration between teachers and researchers. In G. Aldon, F. Hitt, L. Bazzini, U. Gellert (Eds.), Mathematics and technology: A C.I.E.A.E.M. sourcebook (pp. 551–578). Springer International Publishing.

    Google Scholar 

  • Barzel, B., Hußmann, S., & Leuders, T. (Eds.). (2005). Computer, Internet & Co. im Mathematikunterricht. Berlin: Cornelsen Scriptor.

    Google Scholar 

  • Barzel, B., Prediger, S., Leuders, T., & Hußmann, S. (2011). Kontexte und Kernprozesse: Aspekte eines theoriegeleiteten und praxiserprobten Schulbuchkonzepts [Contexts and core processes—Aspects of a school book concept guided by theory and practice]. Beiträge zum Mathematikunterricht, 71–74.

    Google Scholar 

  • Bell, B., & Cowie, B. (2001). The characteristics of formative assessment in science education. Science Education,85(5), 536–553.

    Article  Google Scholar 

  • Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Principles, Policy & Practice,18(1), 5–25.

    Google Scholar 

  • Bernholt, S., Rönnebeck, S., Ropohl, M., Köller, O., & Parchmann, I. (2013). Report on current state of the art in formative and summative assessment in IBE in STM: Report from the FP7 project ASSIST-ME (Deliverable 2.4). Kiel: IPN—Leibnitz-Institut für die Pädagogik der Naturwissenschaften und Mathematik.

    Google Scholar 

  • Black, P., Harrison, C., Lee, C., Marshall, B., & Wiliam, D. (2004). Working inside the black box: Assessment for learning in the classroom. Phi Delta Kappan,86(1), 8–21.

    Article  Google Scholar 

  • Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability,21(1), 5–31.

    Article  Google Scholar 

  • Busch, J. (2015). Graphen “laufen” eigene Wege. Was bei Funktionen schiefgehen kann [Graphs “run” their own ways. What can fail with functions]. Mathematik lehren,191, 30–32.

    Google Scholar 

  • Cavanagh, M., & Mitchelmore, M. (2000). Graphics calculators in mathematics learning: Studies of student and teacher understanding. In M. Thomas (Ed.), Proceedings of the International Conference on Technology in Mathematics Education (pp. 112–119). Auckland: The University of Auckland and Auckland University of Technology.

    Google Scholar 

  • Clement, J. (1985). Misconceptions in graphing. In L. Streefland (Ed.), Proceedings of the 9th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 369–375). Utrecht: PME.

    Google Scholar 

  • DeMarois, P., & Tall, D. (1996). Facets and layers of the function concept. In L. Puig & A. Gutierrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 297–304). Valencia: PME.

    Google Scholar 

  • Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education: A concise topical survey. London: Springer Open.

    Book  Google Scholar 

  • Dubinsky, E., & Harel, G. (1992). The nature of the process conception of function. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 85–106). Washington: Mathematical Association of America.

    Google Scholar 

  • Duval, R. (1999). Representation, Vision and Visualization: Cognitive Functions in Mathematical Thinking. Basic Issues for Learning. Retrieved from http://files.eric.ed.gov/fulltext/ED466379.pdf.

  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics,61(1), 103–131.

    Article  Google Scholar 

  • Ferrara, F., Pratt, D., & Robutti, O. (2006). The role and uses of technologies for the teaching of algebra and calculus. In A. Gutièrrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 237–273). Rotterdam: Sense.

    Google Scholar 

  • Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: A “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education,25(2), 116–140.

    Google Scholar 

  • Hadjidemetriou, C., & Williams, J. (2002). Children’s graphical conceptions. Research in Mathematics Education,4(1), 69–87.

    Article  Google Scholar 

  • Heritage, M. (2007). Formative assessment: What do teachers need to know and do? Phi Delta Kappan,89(2), 140–145.

    Article  Google Scholar 

  • Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515–556). New York, NY: Macmillan.

    Google Scholar 

  • Klinger, M. (2018). Funktionales Denken beim Übergang von der Funktionenlehre zur Analysis: Entwicklung eines Testinstruments und empirische Befunde aus der gymnasialen Oberstufe [Functional thinking in the transition from function theory to calculus: Development of a test and empirical findings from upper secondary students]. Wiesbaden: Springer Spektrum.

    Google Scholar 

  • Ramaprasad, A. (1983). On the definition of feedback. Systems Research and Behavioral Science,28(1), 4–13.

    Google Scholar 

  • Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional Science,18(2), 119–144.

    Article  Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics,22(1), 1–36.

    Article  Google Scholar 

  • Stacey, K., & Wiliam, D. (2013). Technology and assessment in mathematics. In M. A. K. Clements, A. J. Bishop, C. Keitel, J. Klipatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 721–752). New York: Springer.

    Google Scholar 

  • Swan, M. (2014). Design research in mathematics education. In Encyclopedia of mathematics education (pp. 148–152). Springer Netherlands.

    Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics,12(2), 151–169.

    Article  Google Scholar 

  • Vollrath, H.-J. (1989). Funktionales Denken [Functional thinking]. Journal for Didactics of Mathematics,10(1), 3–37.

    Google Scholar 

  • vom Hofe, R., & Blum, W. (2016). “Grundvorstellungen” as a category of subject-matter didactics. Journal for Didactics of Mathematics,37(1), 225–254.

    Google Scholar 

  • Wiliam, D., & Thompson, M. (2008). Integrating assessment with learning: What will it take to make it work? In C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning (pp. 53–82). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169–1207). Charlotte, NC: Information Age.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Ruchniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruchniewicz, H., Barzel, B. (2019). Technology Supporting Student Self-Assessment in the Field of Functions—A Design-Based Research Study. In: Aldon, G., Trgalová, J. (eds) Technology in Mathematics Teaching. Mathematics Education in the Digital Era, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-19741-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19741-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19740-7

  • Online ISBN: 978-3-030-19741-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics