Skip to main content

Pedestrian Detection in Severe Lighting Conditions: Comparative Study of Human Performance vs Thermal-Imaging-Based Automatic System

  • Conference paper
  • First Online:
Progress in Computer Recognition Systems (CORES 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 977))

Included in the following conference series:

Abstract

The paper discusses the problem of human body detection in severe lighting condition from the driver perspective. Results of a study of threat situation recognition, defined as the sudden appearance of a pedestrian in the field of view, are presented. A human reaction efficiency and delay time are contrasted with the automatic detection based on thermal imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamo N, Hodsoll J, Asherson P, Buitelaar JK, Kuntsi J (2019) Ex-Gaussian, frequency and reward analyses reveal specificity of reaction time fluctuations to ADHD and not autism traits. J Abnorm Child Psychol 47(3):557–567. https://doi.org/10.1007/s10802-018-0457-z

    Article  Google Scholar 

  2. Arnold P, Njemini R, Vantieghem S, Gorus E, Pool-Goudzwaard A, Buyl R, Bautmans I (2018) Reaction time in healthy elderly is associated with chronic low-grade inflammation and advanced glycation end product. Exp Gerontol 108:118–124

    Article  Google Scholar 

  3. Boult TE, Lewis R (2011) System and method for driver reaction impairment vehicle exclusion via systematic measurement for assurance of reaction time. US Patent App. 12/980,899

    Google Scholar 

  4. Consiglio W, Driscoll P, Witte M, Berg WP (2003) Effect of cellular telephone conversations and other potential interference on reaction time in a braking response. Accid Anal Prevent 35(4):495–500

    Article  Google Scholar 

  5. Cyganek B, Gruszczyński S (2014) Hybrid computer vision system for drivers eye recognition and fatigue monitoring. Neurocomputing 126:78–94

    Article  Google Scholar 

  6. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR 2005). IEEE

    Google Scholar 

  7. FLIRInstruments (2010) Thermovision sdk user’s manual, 2.6 sp2 edition

    Google Scholar 

  8. Forczmański P, Małecki K (2013) Selected aspects of traffic signs recognition: visual versus RFID approach. In: International conference on transport systems telematics. Springer, pp 268–274

    Google Scholar 

  9. Forczmański P, Nowosielski A, Marczeski P (2015) Video stream analysis for fish detection and classification. In: Wiliński A, Fray IE, Pejaś J (eds) Soft computing in computer and information science. Springer, Cham, pp 157–169. https://doi.org/10.1007/978-3-319-15147-2_14

    Chapter  Google Scholar 

  10. Frejlichowski D, Gościewska K, Nowosielski A, Forczmański P, Hofman R (2015) Application of cascades of classifiers in the vehicle detection scenario for the ‘SM4Public’ system. In: Jackowski K, Burduk R, Walkowiak K, Wozniak M, Yin H (eds) Intelligent data engineering and automated learning - IDEAL 2015. Springer, Cham, pp 207–215

    Chapter  Google Scholar 

  11. Holz M, Weidel E (1998) Night vision enhancement system using diode laser headlights. Technical report, SAE Technical Paper

    Google Scholar 

  12. Johansson G, Rumar K (1971) Drivers’ brake reaction times. Hum Factors 13(1):23–27

    Article  Google Scholar 

  13. Källhammer JE (2006) Night vision: requirements and possible roadmap for FIR and NIR systems. In: Photonics in the automobile II, vol 6198. International Society for Optics and Photonics, p 61980F

    Google Scholar 

  14. Kaur M, Nagpal S, Singh H, Suhalka M (2014) Effect of dual task activity on reaction time in males and females. Indian J Physiol Pharmacol 58(4):389–394

    Google Scholar 

  15. Lange B, Hunfalvay M, Murray N, Roberts CM, Bolte T (2018) Reliability of computerized eye-tracking reaction time tests in non-athletes, athletes, and individuals with traumatic brain injury. Optometry & Visual Performance

    Google Scholar 

  16. Małecki K, Nowosielski A, Forczmański P (2017) Multispectral data acquisition in the assessment of driver s fatigue. Commun Comput Inf Sci 715:320–332. https://doi.org/10.1007/978-3-319-66251-0_26

    Article  Google Scholar 

  17. Małecki K, Watróbski J (2017) Mobile system of decision-making on road threats. Proc Comput Sci 112:1737–1746

    Article  Google Scholar 

  18. Mohebbi R, Gray R, Tan HZ (2009) Driver reaction time to tactile and auditory rear-end collision warnings while talking on a cell phone. Hum Factors 51(1):102–110

    Article  Google Scholar 

  19. Nanda H, Davis L (2002) Probabilistic template based pedestrian detection in infrared videos. In: Intelligent vehicle symposium, vol 1. IEEE, pp 15–20

    Google Scholar 

  20. O’Malley R, Jones E, Glavin M (2010) Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation. Infrared Phys Technol 53:439–449

    Article  Google Scholar 

  21. Piniarski K, Pawłowski P (2016) Multi-branch classifiers for pedestrian detection from infrared night and day images. In: Signal processing: algorithms, architectures, arrangements, and applications (SPA). IEEE, pp 248–253

    Google Scholar 

  22. Pires IM, Marques D, Pombo N, Garcia NM, Marques MC, Flórez-Revuelta F (2018) Measurement of the reaction time in the 30-s chair stand test using the accelerometer sensor available in off-the-shelf mobile devices. In: ICT4AWE, pp 293–298

    Google Scholar 

  23. Schreiner K (1999) Night vision: infrared takes to the road. IEEE Comput Graph Appl 19(5):6–10

    Article  Google Scholar 

  24. Sternberg S (1969) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57(4):421–457

    Google Scholar 

  25. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154. https://doi.org/10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

  26. Weller G, Schlag B (2007) Road user behavior model, deliverable D8 project RIPCORD-ISERET, 6th framework program of the European union

    Google Scholar 

  27. Xianglong S, Hu Z, Shumin F, Zhenning L (2018) Bus drivers mood states and reaction abilities at high temperatures. Transp Res Part F: Traffic Psychol Behav 59:436–444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Nowosielski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nowosielski, A., Małecki, K., Forczmański, P., Smoliński, A. (2020). Pedestrian Detection in Severe Lighting Conditions: Comparative Study of Human Performance vs Thermal-Imaging-Based Automatic System. In: Burduk, R., Kurzynski, M., Wozniak, M. (eds) Progress in Computer Recognition Systems. CORES 2019. Advances in Intelligent Systems and Computing, vol 977. Springer, Cham. https://doi.org/10.1007/978-3-030-19738-4_18

Download citation

Publish with us

Policies and ethics