Advertisement

The Use of Social Robots and the Uncanny Valley Phenomenon

  • Melinda A. MendeEmail author
  • Martin H. Fischer
  • Katharina Kühne
Chapter
  • 1.4k Downloads

Abstract

Social robots are increasingly used in different areas of society such as public health, elderly care, education, and commerce. They have also been successfully employed in autism spectrum disorders therapy with children. Humans strive to find in them not only assistants but also friends. Although forms and functionalities of such robots vary, there is a strong tendency to anthropomorphize artificial agents, making them look and behave as human as possible and imputing human attributes to them. The more human a robot looks, the more appealing it will be considered by humans. However, this linear link between likeness and liking only holds to the point where a feeling of strangeness and eeriness emerges. We discuss possible explanations of this so-called uncanny valley phenomenon that emerges in human–robot interaction. We also touch upon important ethical questions surrounding human–robot interaction in different social settings, such as elderly care or autism spectrum disorders therapy.

Keywords

Social robots Uncanny valley Autism Pet robots Humanoid robots Anthropomorphism 

References

  1. Abildgaard, J. R., & Scharfe, H. (2012). A geminoid as lecturer. In S. S. Ge, O. Khatib, J. J. Cabibihan, R. Simmons, & M. A. Williams (Eds.), Social robotics. ICSR 2012. Lecture notes in computer science (Vol. 7621). Berlin, Germany: Springer.  https://doi.org/10.1007/978-3-642-34103-8_41CrossRefGoogle Scholar
  2. Alaiad, A., & Zhou, L. (2014). The determinants of home healthcare robots adoption: An empirical investigation. International Journal of Medical Informatics, 83(11), 825–840.CrossRefGoogle Scholar
  3. Allport, G. (2012). W. 1954. The nature of prejudice, 12.Google Scholar
  4. Angelucci, A., Bastioni, M., Graziani, P., & Rossi, M. G. (2014). A philosophical look at the uncanny valley. In J. Seibt, R. Hakli, & M. Nørskov (Eds.), Sociable robots and the future of social relations: Proceedings of robophilosophy (Vol. 273, pp. 165–169). Amsterdam, Netherlands: IOS Press.  https://doi.org/10.3233/978-1-61499-480-0-165CrossRefGoogle Scholar
  5. Appel, M., Weber, S., Krause, S., & Mara, M. (2016, March). On the eeriness of service robots with emotional capabilities. In The Eleventh ACM/IEEE International Conference on Human Robot Interaction (pp. 411–412). IEEE Press.  https://doi.org/10.1109/HRI.2016.7451781
  6. Bahner, J. (2012). Legal rights or simply wishes? The struggle for sexual recognition of people with physical disabilities using personal assistance in Sweden. Sexuality and Disability, 30(3), 337–356.CrossRefGoogle Scholar
  7. Becker-Asano, C., & Ishiguro, H. (2011, April). Evaluating facial displays of emotion for the android robot Geminoid F. In 2011 IEEE Workshop on Affective Computational Intelligence (WACI) (pp. 1–8). IEEE.  https://doi.org/10.1109/WACI.2011.5953147
  8. Becker-Asano, C., Ogawa, K., Nishio, S., & Ishiguro, H. (2010). Exploring the uncanny valley with Geminoid HI-1 in a real-world application. In Proceedings of IADIS International Conference Interfaces and Human Computer Interaction (pp. 121–128).Google Scholar
  9. Bharatharaj, J., Huang, L., Mohan, R., Al-Jumaily, A., & Krägeloh, C. (2017). Robot-assisted therapy for learning and social interaction of children with autism spectrum disorder. Robotics, 6(1), 4.  https://doi.org/10.3390/robotics6010004CrossRefGoogle Scholar
  10. Bohlmann, U. M., & Bürger, M. J. F. (2018). Anthropomorphism in the search for extra-terrestrial intelligence—The limits of cognition? Acta Astronautica, 143, 163–168.  https://doi.org/10.1016/j.actaastro.2017.11.033CrossRefGoogle Scholar
  11. Breazeal, C. (2002). Designing sociable machines. In Socially intelligent agents (pp. 149–156). Boston, MA: Springer.CrossRefGoogle Scholar
  12. Brenton, H., Gillies, M., Ballin, D., & Chatting, D. (2005). The uncanny valley: Does it exist? Wired, 730(1978), 2–5. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6952&rep=rep1&type=pdf
  13. Brink, K. A., Gray, K., & Wellman, H. M. (2017). Creepiness creeps in: Uncanny valley feelings are acquired in childhood. Child Development.  https://doi.org/10.1111/cdev.12999CrossRefGoogle Scholar
  14. Broadbent, E. (2017). Interactions with robots: The truths we reveal about ourselves. Annual Review of Psychology, 68(1), 627–652.  https://doi.org/10.1146/annurev-psych-010416-043958CrossRefPubMedGoogle Scholar
  15. Burleigh, T. J., & Schoenherr, J. R. (2015). A reappraisal of the uncanny valley: Categorical perception or frequency-based sensitization? Frontiers in Psychology, 5, 1488.  https://doi.org/10.3389/fpsyg.2014.01488CrossRefPubMedPubMedCentralGoogle Scholar
  16. Burrows, E. (2011). The birth of a robot race. Engineering & Technology, 6(10), 46–48.CrossRefGoogle Scholar
  17. Cabibihan, J. J., Javed, H., Ang, M., & Aljunied, S. M. (2013). Why robots? A survey on the roles and benefits of social robots in the therapy of children with autism. International Journal of Social Robotics, 5(4), 593–618.  https://doi.org/10.1007/s12369-013-0202-2CrossRefGoogle Scholar
  18. Cangelosi, A., & Schlesinger, M. (2015). Developmental robotics: From babies to robots. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  19. Cheetham, M., Wu, L., Pauli, P., & Jancke, L. (2015). Arousal, valence, and the uncanny valley: Psychophysiological and self-report findings. Frontiers in Psychology, 6, 1–15.  https://doi.org/10.3389/fpsyg.2015.00981CrossRefGoogle Scholar
  20. Cheok, A. D., Levy, D., Karunanayaka, K., & Morisawa, Y. (2017). Love and sex with robots. In R. Nakatsu, M. Rauterberg, & P. Ciancarini (Eds.), Handbook of digital games and entertainment technologies (pp. 833–858). Singapore: Springer.CrossRefGoogle Scholar
  21. Chong, T. T. J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 1576–1580.  https://doi.org/10.1016/j.cub.2008.08.068CrossRefPubMedGoogle Scholar
  22. Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamics walkers. Science, 307(5712), 1082–1085.  https://doi.org/10.1126/science.1107799CrossRefPubMedGoogle Scholar
  23. D’Cruz, G. (2014). 6 things I know about Geminoid F, or what I think about when I think about android theatre. Australasian Drama Studies, (65), 272.Google Scholar
  24. Dautenhahn, K., & Werry, I. (2004). Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmatics & Cognition, 12(1), 1–35.  https://doi.org/10.1075/pc.12.1.03dauCrossRefGoogle Scholar
  25. Duffy, B. R. (2003). Anthropomorphism and the social robot. Robotics and Autonomous Systems, 42(3–4), 177–190.  https://doi.org/10.1016/S0921-8890(02)00374-3CrossRefGoogle Scholar
  26. Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864–886.  https://doi.org/10.1037/0033-295X.114.4.864CrossRefPubMedGoogle Scholar
  27. Ferrey, A. E., Burleigh, T. J., & Fenske, M. J. (2015). Stimulus-category competition, inhibition, and affective devaluation: A novel account of the uncanny valley. Frontiers in Psychology, 6, 1–15.  https://doi.org/10.3389/fpsyg.2015.00249CrossRefGoogle Scholar
  28. Franchi, A. M., Sernicola, L., & Gini, G. (2016). Linguistic primitives: A new model for language development in robotics. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (pp. 207–218). Cham, Switzerland: Springer.  https://doi.org/10.1007/978-3-319-43488-9_19CrossRefGoogle Scholar
  29. Freud, S. (1919). 1947. Das Unheimliche. In Gesammelte Werke XII. London, UK: Imago.Google Scholar
  30. Gammino, G. R., Faccio, E., & Cipolletta, S. (2016). Sexual assistance in Italy: An explorative study on the opinions of people with disabilities and would-be assistants. Sexuality and Disability, 34(2), 157–170.CrossRefGoogle Scholar
  31. Gray, K., & Wegner, D. M. (2012). Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition, 125(1), 125–130.  https://doi.org/10.1016/j.cognition.2012.06.007CrossRefPubMedGoogle Scholar
  32. Hanson, D. (2005). Expanding the aesthetic possibilities for humanoid robots. In IEEE-RAS International Conference on Humanoid Robots (pp. 24–31). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.2518&rep=rep1&type=pdf
  33. Haslam, N. (2006). Dehumanization: An integrative review Nick Haslam. Personal and Social Psychology Review, 10(3), 214–234.  https://doi.org/10.1207/s15327957pspr1003CrossRefGoogle Scholar
  34. Haslam, N., & Loughnan, S. (2014). Dehumanization and infrahumanization. Annual Review of Psychology, 65(1), 399–423.  https://doi.org/10.1146/annurev-psych-010213-115045CrossRefPubMedGoogle Scholar
  35. Hegel, F., Krach, S., Kircher, T., Wrede, B., & Sagerer, G. (2008). Understanding social robots: A user study on anthropomorphism. In RO-MAN 2008—The 17th IEEE International Symposium on Robot and Human Interactive Communication (January 2016) (pp. 574–579).  https://doi.org/10.1109/ROMAN.2008.4600728
  36. Ho, C. C., & MacDorman, K. F. (2017). Measuring the uncanny valley effect. International Journal of Social Robotics, 9(1), 129–139.  https://doi.org/10.1007/s12369-016-0380-9CrossRefGoogle Scholar
  37. Hsu, J. (2012). Robotics’ uncanny valley gets new translation. Livescience.Google Scholar
  38. Huijnen, C. A. G. J., Lexis, M. A. S., Jansens, R., & de Witte, L. P. (2017). How to Implement Robots in Interventions for Children with Autism? A Co-creation Study Involving People with Autism, Parents and Professionals. Journal of Autism and Developmental Disorders, 47(10), 3079–3096.  https://doi.org/10.1007/s10803-017-3235-9CrossRefPubMedPubMedCentralGoogle Scholar
  39. Huskens, B., Palmen, A., Van der Werff, M., Lourens, T., & Barakova, E. (2015). Improving collaborative play between children with autism spectrum disorders and their siblings: The effectiveness of a robot-mediated intervention based on Lego® therapy. Journal of Autism and Developmental Disorders, 45(11), 3746–3755.  https://doi.org/10.1007/s10803-014-2326-0CrossRefPubMedGoogle Scholar
  40. Huskens, B., Verschuur, R., Gillesen, J., Didden, R., & Barakova, E. (2013). Promoting question-asking in school-aged children with autism spectrum disorders: Effectiveness of a robot intervention compared to a human-trainer intervention. Developmental Neurorehabilitation, 16(5), 345–356.  https://doi.org/10.3109/17518423.2012.739212CrossRefPubMedGoogle Scholar
  41. Jentsch, E. (1997). On the psychology of the uncanny (1906). Angelaki, 2(1), 7–16.CrossRefGoogle Scholar
  42. Jones, B. C., Little, A. C., Burt, D. M., & Perrett, D. I. (2004). When facial attractiveness is only skin deep. Perception, 33(5), 569–576.  https://doi.org/10.1068/p3463CrossRefPubMedGoogle Scholar
  43. Kachouie, R., Sedighadeli, S., Khosla, R., & Chu, M. T. (2014). Socially assistive robots in elderly care: A mixed-method systematic literature review. International Journal of Human-Computer Interaction, 30(5), 369–393.CrossRefGoogle Scholar
  44. Kanda, T., Sato, R., Saiwaki, N., & Ishiguro, H. (2007). A two-month field trial in an elementary school for long-term human-robot interaction. IEEE Transactions on Robotics, 23, 962–971.  https://doi.org/10.1109/TRO.2007.904904CrossRefGoogle Scholar
  45. Kätsyri, J., Förger, K., Mäkäräinen, M., & Takala, T. (2015). A review of empirical evidence on different uncanny valley hypotheses: Support for perceptual mismatch as one road to the valley of eeriness. Frontiers in Psychology, 6, 1–16.  https://doi.org/10.3389/fpsyg.2015.00390CrossRefGoogle Scholar
  46. Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience, 29(32), 10153–10159.  https://doi.org/10.1523/JNEUROSCI.2668-09.2009CrossRefPubMedPubMedCentralGoogle Scholar
  47. Koschate, M., Potter, R., Bremner, P., & Levine, M. (2016, April). Overcoming the uncanny valley: Displays of emotions reduce the uncanniness of humanlike robots. In ACM/IEEE International Conference on Human-Robot Interaction (Vol. 2016, pp. 359–365).  https://doi.org/10.1109/HRI.2016.7451773
  48. Kozima, H., Nakagawa, C., & Yasuda, Y. (2005). Interactive robots for communicative-care. A case study in autism therapy. Resource document. Retrieved June 24, 2018, from http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10132
  49. Kuhnert, B., Ragni, M., & Lindner, F. (2017, August). The gap between human’s attitude towards robots in general and human’s expectation of an ideal everyday life robot. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 1102–1107). IEEE.Google Scholar
  50. Lewkowicz, D. J., & Ghazanfar, A. A. (2012). The development of the uncanny valley in infants. Developmental Psychobiology, 54(2), 124–132.  https://doi.org/10.1002/dev.20583CrossRefPubMedGoogle Scholar
  51. Liarokapis, M. V., Artemiadis, P. K., & Kyriakopoulos, K. J. (2012). Functional Anthropomorphism for human to robot motion mapping. In Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (pp. 31–36).  https://doi.org/10.1109/ROMAN.2012.6343727
  52. MacDorman, K. (2005). Androids as an experimental apparatus: Why is there an uncanny valley and can we exploit it. In CogSci-2005 Workshop: Toward Social Mechanisms of Android Science (Vol. 3, pp. 106–118). Retrieved from https://www.lri.fr/~sebag/Slides/uncanny.pdf
  53. MacDorman, K. F., & Chattopadhyay, D. (2016). Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition, 146, 190–205.  https://doi.org/10.1016/j.cognition.2015.09.019CrossRefPubMedGoogle Scholar
  54. MacDorman, K. F., & Entezari, S. O. (2015). Individual differences predict sensitivity to the uncanny valley. Interaction Studies, 16(2), 141–172.  https://doi.org/10.1075/is.16.2.01macCrossRefGoogle Scholar
  55. MacDorman, K. F., & Ishiguro, H. (2006). The uncanny advantage of using androids in cognitive and social science research. Interaction Studies, 7(3), 297–337.  https://doi.org/10.1075/is.7.3.03macCrossRefGoogle Scholar
  56. Mathur, M. B., & Reichling, D. B. (2016). Navigating a social world with robot partners: A quantitative cartography of the uncanny valley. Cognition, 146, 22–32.  https://doi.org/10.1016/j.cognition.2015.09.008CrossRefPubMedGoogle Scholar
  57. Matsuda, Y.-T., Okamoto, Y., Ida, M., Okanoya, K., & Myowa-Yamakoshi, M. (2012). Infants prefer the faces of strangers or mothers to morphed faces: An uncanny valley between social novelty and familiarity. Biology Letters, 8(5), 725–728.  https://doi.org/10.1098/rsbl.2012.0346CrossRefPubMedPubMedCentralGoogle Scholar
  58. Minato, T., Yoshikawa, Y., Noda, T., Ikemoto, S., Ishiguro, H., & Asada, M. (2007, November). CB2: A child robot with biomimetic body for cognitive developmental robotics. In 2007 7th IEEE-RAS International Conference on Humanoid Robots (pp. 557–562). IEEE.  https://doi.org/10.1109/ICHR.2007.4813926
  59. Minsky, M. (1980). Telepresence. Omni, 2(9), 44–52.Google Scholar
  60. Mitchell, W. J., Szerszen, K. A., Sr., Lu, A. S., Schermerhorn, P. W., Scheutz, M., & MacDorman, K. F. (2011). A mismatch in the human realism of face and voice produces an uncanny valley. i-Perception, 2(1), 10–12.  https://doi.org/10.1068/i0415CrossRefPubMedPubMedCentralGoogle Scholar
  61. Moosa, M. M., & Minhaz Ud-Dean, S. M. (2010). Danger avoidance: An evolutionary explanation of the uncanny valley. Biological Theory, 5, 12–14.  https://doi.org/10.1162/BIOT_a_00016CrossRefGoogle Scholar
  62. Mori, M. (1970). The uncanny valley. Energy, 7(4), 33–35.  https://doi.org/10.1109/MRA.2012.2192811CrossRefGoogle Scholar
  63. Movellan, J. R., Tanaka, F., Fortenberry, B., & Aisaka, K. (2005). The RUBI/QRIO project: Origins, principles, and first steps. In The 4th International Conference on Development and Learning (pp. 80–86). IEEE.  https://doi.org/10.1109/DEVLRN.2005.1490948
  64. Murphy, G. L. (2002). The big book of concepts. Harvard, MA: MIT Press.CrossRefGoogle Scholar
  65. Nishio, S., Ishiguro, H., & Hagita, N. (2007). Geminoid: Teleoperated android of an existing person. In A. Carlos de Pina Filho (Ed.), Humanoid robots: New developments (pp. 343–3252). London, UK: InTech. Retrieved from http://www.intechopen.com/books/humanoid_robots_new_developments/geminoid__teleoperated_android_of_an_existing_person
  66. Nomura, T., Suzuki, T., Kanda, T., & Kato, K. (2006). Measurement of negative attitudes toward robots. Interaction Studies, 7(3), 437–454.CrossRefGoogle Scholar
  67. Nomura, T. T., Syrdal, D. S., & Dautenhahn, K. (2015). Differences on social acceptance of humanoid robots between Japan and the UK. In Proceedings of the 4th International Symposium on New Frontiers in Human-Robot Interaction. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB).Google Scholar
  68. Ogawa, K., Bartneck, C., Sakamoto, D., Kanda, T., Ono, T., & Ishiguro, H. (2018). Can an android persuade you? In Geminoid studies: Science and technologies for humanlike teleoperated androids (pp. 235–247). Singapore: Springer.CrossRefGoogle Scholar
  69. Ortland, B. (2016). Sexuelle Selbstbestimmung von Menschen mit Behinderung: Grundlagen und Konzepte für die Eingliederungshilfe. Stuttgart, Germany: Kohlhammer Verlag.Google Scholar
  70. Ortland, B. (2017). Realisierungs (un) möglichkeiten sexueller Selbstbe-stimmung bei Menschen mit Komplexer Behinde-rung. Schwere Behinderung & Inklusion: Facetten einer nicht ausgrenzenden Pädagogik, 2, 111.Google Scholar
  71. Osada, J., Ohnaka, S., & Sato, M. (2006). The scenario and design process of childcare robot, PaPeRo. In Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology - ACE ’06 (p. 80).  https://doi.org/10.1145/1178823.1178917
  72. Perrett, D. (2010). In your face. The new science of human attraction. Basingstoke, UK: Palgrave Macmillan.CrossRefGoogle Scholar
  73. Pollack, M. E., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrishnan, S., … Thrun, S. (2002, August). Pearl: A mobile robotic assistant for the elderly. In AAAI Workshop on Automation as Eldercare (Vol. 2002, pp. 85–91). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.6947&rep=rep1&type=pdf
  74. Pollick, F. E. (2010). In search of the uncanny valley. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (Vol. 40 LNICST, pp. 69–78).  https://doi.org/10.1007/978-3-642-12630-7_8Google Scholar
  75. Pulvermüller, F., Garagnani, M., & Wennekers, T. (2014). Thinking in circuits: Toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics, 108(5), 573–593.  https://doi.org/10.1007/s00422-014-0603-9CrossRefPubMedPubMedCentralGoogle Scholar
  76. Responsible Robotics. (2018). FRR report: Our sexual future with robots. Responsible Robotics. [online]. Retrieved May 29, 2018, from https://responsiblerobotics.org/2017/07/05/frr-report-our-sexual-future-with-robots/
  77. Rhodes, G., Yoshikawa, S., Clark, A., Kieran, L., McKay, R., & Akamatsu, S. (2001). Attractiveness of facial averageness and symmetry in non-western cultures: In search of biologically based standards of beauty. Perception, 30(5), 611–625.  https://doi.org/10.1068/p3123CrossRefPubMedGoogle Scholar
  78. Richer, J. M., & Coss, R. G. (1976). Gaze aversion in autistic and normal children. Acta Psychiatrica Scandinavica, 53(3), 193–210.  https://doi.org/10.1111/j.1600-0447.1976.tb00074.xCrossRefPubMedGoogle Scholar
  79. Ricks, D. J., & Colton, M. B. (2010). Trends and considerations in robot-assisted autism therapy. In Proceedings - IEEE International Conference on Robotics and Automation (June) (pp. 4354–4359).  https://doi.org/10.1109/ROBOT.2010.5509327
  80. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey - II. Area F5 and the control of distal movements. Experimental Brain Research, 71(3), 491–507.  https://doi.org/10.1007/BF00248742CrossRefPubMedGoogle Scholar
  81. Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1999). Resonance behaviors and mirror neurons. Archives Italiennes de Biologie, 137(2), 85–100.  https://doi.org/10.4449/AIB.V137I2.575CrossRefPubMedGoogle Scholar
  82. Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2004). Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society, 4(2), 105–120.  https://doi.org/10.1007/s10209-005-0116-3CrossRefGoogle Scholar
  83. Sabelli, A. M., & Kanda, T. (2016). Robovie as a mascot: A qualitative study for long-term presence of robots in a shopping mall. International Journal of Social Robotics, 8(2), 211–221.CrossRefGoogle Scholar
  84. Sabelli, A. M., Kanda, T., & Hagita, N. (2011, March). A conversational robot in an elderly care center: An ethnographic study. In 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 37–44). IEEE.Google Scholar
  85. Sasaki, K., Ihaya, K., & Yamada, Y. (2017). Avoidance of novelty contributes to the uncanny valley. Frontiers in Psychology, 8, 1792.  https://doi.org/10.3389/fpsyg.2017.01792CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sawada, H., Kitani, M., & Hayashi, Y. (2008). A robotic voice simulator and the interactive training for hearing-impaired people. BioMed Research International, 2008, 768232.  https://doi.org/10.1155/2008/768232CrossRefGoogle Scholar
  87. Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2012). The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience, 7(4), 413–422.  https://doi.org/10.1093/scan/nsr025CrossRefPubMedGoogle Scholar
  88. Scheutz, M., & Arnold, T. (2016, March). Are we ready for sex robots? In The Eleventh ACM/IEEE International Conference on Human Robot Interaction (pp. 351–358). IEEE Press. Retrieved from https://hrilab.tufts.edu/publications/scheutzarnold16hri.pdf
  89. Schindler, S., Zell, E., Botsch, M., & Kissler, J. (2017). Differential effects of face-realism and emotion on event-related brain potentials and their implications for the uncanny valley theory. Scientific Reports, 7, 45003.  https://doi.org/10.1038/srep45003CrossRefPubMedPubMedCentralGoogle Scholar
  90. Schoenherr, J. R., & Lacroix, G. (2014). Overconfidence in nonlinearly separable category structures as evidence for dissociable category learning systems. Canadian Journal of Experimental Psychology, 68(4), 264.  https://doi.org/10.1126/science.1164582CrossRefGoogle Scholar
  91. Scopelliti, M., Giuliani, M. V., & Fornara, F. (2005). Robots in a domestic setting: A psychological approach. Universal access in the information society, 4(2), 146–155.CrossRefGoogle Scholar
  92. Sequeira J., Lima, P., Saffiotti, A., Gonzalez-Pacheco, V., & Salichs, M. A. (2013) Monarch: Multi-robot cognitive systems operating in hospitals. In ICRA workshop Crossing the Reality Gap from Single to Multi- to Many Robot Systems. Karlsruhe, Germany.Google Scholar
  93. Sharkey, A., & Sharkey, N. (2012). Granny and the robots: Ethical issues in robot care for the elderly. Ethics and Information Technology, 14(1), 27–40.  https://doi.org/10.1007/s10676-010-9234-6CrossRefGoogle Scholar
  94. Shim, J., Arkin, R., & Pettinatti, M. (2017, May). An Intervening Ethical Governor for a robot mediator in patient-caregiver relationship: Implementation and Evaluation. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2936–2942). IEEE.Google Scholar
  95. Shin, N., & Kim, S. (2007, August). Learning about, from, and with robots: Students’ perspectives. In The 16th IEEE International Symposium on Robot and Human Interactive Communication, 2007. RO-MAN 2007 (pp. 1040–1045). IEEE.Google Scholar
  96. Steckenfinger, S. A., & Ghazanfar, A. A. (2009). Monkey visual behavior falls into the uncanny valley. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18362–18366.  https://doi.org/10.1073/pnas.0910063106CrossRefPubMedPubMedCentralGoogle Scholar
  97. Stein, J. P., & Ohler, P. (2017). Venturing into the uncanny valley of mind—The influence of mind attribution on the acceptance of human-like characters in a virtual reality setting. Cognition, 160, 43–50.  https://doi.org/10.1016/j.cognition.2016.12.010CrossRefPubMedGoogle Scholar
  98. Strait, M., Vujovic, L., Floerke, V., Scheutz, M., & Urry, H. (2015). Too much humanness for human-robot interaction: Exposure to highly humanlike robots elicits aversive responding in observers. In Proceedings of the ACM CHI’15 Conference on Human Factors in Computing Systems (Vol. 1, pp. 3593–3602).  https://doi.org/10.1145/2702123.2702415
  99. Svendsen, M. (1934). Children’s imaginary companions. Archives of Neurology and Psychiatry, 32(5), 985–999.  https://doi.org/10.1001/archneurpsyc.1934.02250110073006CrossRefGoogle Scholar
  100. Tanaka, F. (2007). Care-receiving robot as a tool of teachers in child education. Interaction Studies, 11(2), 263–268.  https://doi.org/10.1075/is.11.2.14tanCrossRefGoogle Scholar
  101. Tanaka, F., Cicourel, A., & Movellan, J. R. (2007). Socialization between toddlers and robots at an early childhood education center. Proceedings of the National Academy of Sciences, 104(46), 17954–17958.  https://doi.org/10.1073/pnas.0707769104CrossRefGoogle Scholar
  102. Tanaka, F., & Kimura, T. (2009, September). The use of robots in early education: A scenario based on ethical consideration. In The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009. RO-MAN 2009 (pp. 558–560). IEEE.  https://doi.org/10.1109/ROMAN.2009.5326227
  103. Tanaka, J. W., & Sung, A. (2016). The “eye avoidance” hypothesis of autism face processing. Journal of Autism and Developmental Disorders, 46(5), 1538–1552.  https://doi.org/10.1007/s10803-013-1976-7CrossRefPubMedPubMedCentralGoogle Scholar
  104. Tschöpe, N., Reiser, J. E., & Oehl, M. (2017, March). Exploring the uncanny valley effect in social robotics. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (pp. 307–308). ACM.  https://doi.org/10.1145/3029798.3038319
  105. Urgen, B. A., Li, A. X., Berka, C., Kutas, M., Ishiguro, H., & Saygin, A. P. (2015). Predictive coding and the uncanny valley hypothesis: Evidence from electrical brain activity. Cognition: A Bridge between Robotics and Interaction, 15–21.  https://doi.org/10.1109/TAMD.2014.2312399CrossRefGoogle Scholar
  106. Wang, S., Lilienfeld, S. O., & Rochat, P. (2015). The uncanny valley: Existence and explanations. Review of General Psychology, 19(4), 393–407.  https://doi.org/10.1037/gpr0000056CrossRefGoogle Scholar
  107. Whorf, B. L. (1956). Language, thought, and reality: Selected writings of…. (edited by John B. Carroll.). Oxford, UK: Technology Press of MIT.Google Scholar
  108. Wilson, A. D., & Golonka, S. (2013). Embodied cognition is not what you think it is. Frontiers in Psychology, 4, 58.  https://doi.org/10.3389/fpsyg.2013.00058CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wu, Y. H., Wrobel, J., Cornuet, M., Kerhervé, H., Damnée, S., & Rigaud, A. S. (2014). Acceptance of an assistive robot in older adults: A mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting. Clinical Interventions in Aging, 9, 801.CrossRefGoogle Scholar
  110. Yamada, Y., Kawabe, T., & Ihaya, K. (2013). Categorization difficulty is associated with negative evaluation in the “uncanny valley” phenomenon. Japanese Psychological Research, 55(1), 20–32.  https://doi.org/10.1111/j.1468-5884.2012.00538.xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Melinda A. Mende
    • 1
    Email author
  • Martin H. Fischer
    • 1
  • Katharina Kühne
    • 1
  1. 1.Division of Cognitive Sciences, Department of PsychologyUniversity of PotsdamPotsdamGermany

Personalised recommendations