Skip to main content

Exact Solutions—Field Moments

  • Chapter
  • First Online:
Applied General Relativity

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1461 Accesses

Abstract

Exact solutions of EFE do not play a central role for the field of Applied General Relativity (if we exclude the field of relativistic astrophysics and cosmology); nevertheless they might serve as a guide to understand certain aspects of practical systems where gravity plays a role and as assistance for the construction of approximative formalisms. A huge number of exact solutions of EFE have been found; the reader is referred to the standard literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowicz, M., Almergren, G.J.E., Kluźniak, W., Thampan, A.V., 2003: Circular geodesics in the Hartle-Thorne metric, arXiv: gr-qc/0312070.

    Google Scholar 

  • Bäckdahl, T., Herberthson, M., 2005: Static axisymmetric spacetimes with prescribed multipole moments, Class. Quantum Grav., 22, pp. 1607–1621.

    Article  ADS  MathSciNet  Google Scholar 

  • Bäckdahl, T.: 2008: Multipole moments of axisymmetric spacetimes, Matematiska institutionen, Linköpings universitet, Linköping, Sweden.

    Google Scholar 

  • Bauböck, M., Berti, E., Psaltis, D., Özel, F., 2013: Relations between Neutron-Star Parameters in the Hartle-Thorne Approximation, Ap. J., 777, 68.

    Article  ADS  Google Scholar 

  • Beig, R., Schmidt, B., 2000: Time-Independent Gravitational Fields, in: Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers (Lecture Notes in Physics), B. Schmidt (Ed.), Springer, pp. 325–372.

    Google Scholar 

  • Bicák, J., Katz, J., 2005: On the uniqueness of harmonic coordinates, Czech. J. Phys., 55, pp. 105–118.

    Article  ADS  MathSciNet  Google Scholar 

  • Bini, D., Geralico, A., Luongo, O., Quevedo, H., 2009: Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties vs particle motion, Class. Quantum Grav., 26, 225006.

    Article  ADS  Google Scholar 

  • Bini, D., Crosta, M.-T., de Felice, F., Geralico, A., Vecchiato, A., 2013: The Erez–Rosen metric and the role of the quadrupole on light propagation, Class. Quantum Grav., 30, 045009.

    Article  ADS  MathSciNet  Google Scholar 

  • de Sitter, W., 1917: On the relativity of inertia: Remarks concerning Einstein’s latest hypothesis. In: Proc.Kon.Ned.Acad.Wet., 19 pp. 1217–1225.

    Google Scholar 

  • d’Inverno, R., 1992: Introducing Einstein’s Relativity, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Doroshkevich, A., Zel’dovich, Y.B., Novikov, I., 1966: Gravitational Collapse of Nonsymmetric and Rotating Masses, Sov. Phys.-JETP 22, pp. 122–130.

    Google Scholar 

  • Einasto, M., Tago, E., Saar, E., Nurmi, P., Enkvist, I., Einasto, P., Heinämäki, P., Liivamägi, L.J., Tempel, E., Einasto, J., Martinez, V.J., Vennik, J., Pihajoki, P., 2010: The Sloan great wall. Rich clusters, Astron. Astrophys., 522, A92.

    Article  ADS  Google Scholar 

  • Erez, G., Rosen, N., 1959: The gravitational field of a particle possessing a multipole moment, Bull Res. Counc. Isr. F 8, pp. 47–50.

    MathSciNet  MATH  Google Scholar 

  • Ernst, F.J., 1968a: New Formulation of the Axially Symmetric Gravitational Field Problem, Phys. Rev., 167, pp. 1175–1178.

    Article  ADS  Google Scholar 

  • Ernst, F.J., 1968b: New Formulation of the Axially Symmetric Gravitational Field Problem II, Phys. Rev., 168, pp. 1415–1417.

    Article  ADS  Google Scholar 

  • Filter, R.F., 2008: Multipolmomente axialsymmetrisch stationärer Raumzeiten und die Quadrupol-Vermutung, diploma thesis, Friedrich Schiller Universität Jena.

    Google Scholar 

  • Fodor, G., Hoenselaers, C., Perjés, Z., 1989: Multipole Moments of Axisymmetric Systems in Relativity, J. Math. Phys., 30, pp. 2252–2257.

    Article  ADS  MathSciNet  Google Scholar 

  • Geroch, R., 1970: Multipole Moments. II. Curved Space, J. Math. Phys., 11, pp. 2580–2588.

    Article  ADS  MathSciNet  Google Scholar 

  • Geroch, R., 1971: A Method for Generating Solutions of Einstein’s Equations, J. Math. Phys., 12, pp. 918–924.

    Article  ADS  MathSciNet  Google Scholar 

  • Geroch, R., 1978: General Relativity from A to B, University of Chicago Press, Chicago.

    Google Scholar 

  • Griffiths, J.B., Podolsky, J., 2009: Exact Space-Times in Einstein’s General Relativity, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gürsel, Y., 1983: Multipole Moments for Stationary Systems: The Equivalence of the Geroch-Hansen Formulation and the Thorne Formulation, Gen. Rel. Grav., 15, pp. 737–754.

    Article  ADS  MathSciNet  Google Scholar 

  • Hansen, R.O., 1974: Multipole moments of stationary space-times, J. Math. Phys., 15, pp. 46–52.

    Article  ADS  MathSciNet  Google Scholar 

  • Hartle, J., 1967: Slowly Rotating Relativistic Stars I. Equations of Structure, Astrophys. J., 150, pp. 1005–1029.

    Article  ADS  Google Scholar 

  • Hartle, J., Sharp, D.H., 1967: Variational Principle for the Equilibrium of a Relativistic, Rotating Star, Astrophys. J., 147, pp. 317–333.

    Article  ADS  Google Scholar 

  • Hartle, J., Thorne, K.S., 1968: Slowly Rotating Relativistic Stars III. Static Criterion for Stability, Astrophys. J., 153, pp. 719–726.

    Article  Google Scholar 

  • Hernández-Pastora, J.L., 2010: On the Calculation and Interpretation of MSA coordinates, Class. Quantum Grav., 27, 45006.

    Article  MathSciNet  Google Scholar 

  • Hernández-Pastora, J.L., Martin, J., 1993: New static axisymmetric solution of the Einstein field equations, Class. Quantum Grav., 10, pp. 2581–2585.

    Article  ADS  MathSciNet  Google Scholar 

  • Hoenselaers, C., Perjés, Z., 1980: Multipole moments of axisymmetric electrovacuum spacetimes, Class. Quantum Grav., 7, pp. 1819–1825.

    Article  ADS  MathSciNet  Google Scholar 

  • Islam, J.N., 1985: Rotating fields in general relativity, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Israel, W., Wilson, G., 1972: A Class of Stationary Electromagnetic Vacuum Fields, J. Math. Phys., 13, pp. 865–867.

    Article  ADS  Google Scholar 

  • Kerr, R.P., 1963: Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, pp. 237–238.

    Article  ADS  MathSciNet  Google Scholar 

  • Kinnersley, W., 1973: Generation of stationary Einstein-Maxwell fields, J. Math. Phys., 14 (5), pp. 651–653.

    Article  ADS  MathSciNet  Google Scholar 

  • Klioner, S., Soffel, M., 2005: Refining the relativistic model for GAIA: cosmological effects in the BCRS, In: Proceedings of Symposium “The Three-Dimensional Universe with Gaia”, 4–7 October 2004, Paris, pp. 305–309.

    Google Scholar 

  • Klioner, S., Soffel, M., 2014: Post-linear Schwarzschild solution in harmonic coordinates: Elimination of structure-dependent terms, Phys. Rev., D 89, 104056.

    Google Scholar 

  • Manko, V.S., Novikov, I., 1992: Generalization of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments, Class. Quantum Grav., 9, pp. 2477–2487.

    Article  ADS  MathSciNet  Google Scholar 

  • Misner, C.W., Thorne, K.S., Wheeler, J.A., 1973: Gravitation, Freeman, San Francisco (MTW).

    Google Scholar 

  • Papapetrou, A., Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie, Ann. Phys. (Leipzig) 12, pp. 309–315.

    Article  ADS  Google Scholar 

  • Quevedo, H., 1989: General static axisymmetric solution of Einstein’s vacuum field equations in prolate spheroidal coordinates, Phys. Rev., D 39, pp. 2904–2911.

    Article  ADS  MathSciNet  Google Scholar 

  • Quevedo, H., 1990: Multipole moments in general relativity - static and stationary vacuum solutions, Fortschritte der Physik 38, pp. 733–840.

    Article  ADS  MathSciNet  Google Scholar 

  • Quevedo, H., Mashhoon, B., 1985: Exterior Gravitational Field of a Rotating Deformed Mass, Phys. Lett., A 109, pp. 13–18.

    Article  ADS  MathSciNet  Google Scholar 

  • Quevedo, H., Mashhoon, B., 1990: Exterior gravitational field of a charged rotating mass with arbitrary quadrupole moment, Phys. Lett., A 148, pp. 149–153.

    Article  ADS  MathSciNet  Google Scholar 

  • Quevedo, H., Mashhoon, B., 1991: Generalization of the Kerr spacetime, Phys. Rev., D 43, pp. 3902–3906.

    Article  ADS  MathSciNet  Google Scholar 

  • Rindler, W., 2001: Relativity, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Robertson, H.P., 1935: Kinematics and world structure, Astrophys. J., 82, pp. 284–301.

    Article  ADS  Google Scholar 

  • Robertson, H.P., 1936a, Kinematics and world structure II, Astrophys. J., 83, pp. 187–201.

    Article  ADS  Google Scholar 

  • Robertson, H.P., 1936b, Kinematics and world structure III, Astrophys. J., 83, pp. 257–271.

    Article  ADS  Google Scholar 

  • Shectman, S.A., Landy, S.D., Oemler, A., Tucker, D.L., Lin, H., Kirshner, R.P., Schechter, P.L., 1996: The Las Campanas Redshift Survey, Astrophys. J., 470, pp. 172–188.

    Article  ADS  Google Scholar 

  • Simon, W., Beig, R., 1983: The Multipole Structure of Stationary Space-Times, J. Math. Phys., 24, pp. 1163–1171.

    Article  ADS  MathSciNet  Google Scholar 

  • Stephani, H., Kramer, D., MacCullum, M.A., Hoenselaers, C., Herlt, E., 2003: Exact Solutions of Einstein’s Field Equations, 2nd ed., Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Tanabe, 1976: Multipole Moments in General Relativity, Prog. Theor. Phys., 55 (1), pp. 106–114.

    Article  ADS  Google Scholar 

  • Thorne, K., 1980: Multipole expansions of gravitational radiation, Rev. Mod. Phys., 52, pp. 299–339.

    Article  ADS  MathSciNet  Google Scholar 

  • Wald, R., 1984: General Relativity, University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Walker, A.G., 1937: On Milne’s theory of world-structure, Proc. Lond. Math. Soc., Series 2, 42, pp. 90–127.

    Article  MathSciNet  Google Scholar 

  • Weinberg, S., 1972: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley & Sons, New York.

    Google Scholar 

  • Winicour, J., Janis, A.I., Newman, E.T., 1968: Static, axially symmetric point horizons, Phys. Rev., 176, pp. 1507–1513.

    Article  ADS  Google Scholar 

  • Wu, K.K., Lahav, O., Rees, M., 1999: The large-scale smoothness of the Universe, Nature 397, 21 January 1999, pp. 225–230.

    Google Scholar 

  • Young, J.H., Coulter, C.A., 1969: Exact metric for a nonrotating mass with a quadrupole moment, Phys. Rev., 184, pp. 1313–1315.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soffel, M.H., Han, WB. (2019). Exact Solutions—Field Moments. In: Applied General Relativity. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-19673-8_6

Download citation

Publish with us

Policies and ethics