Skip to main content

Relativity

  • Chapter
  • First Online:
Applied General Relativity

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1451 Accesses

Abstract

Already in 1864 Maxwell (1864, 1865) published his fundamental equations of electromagnetism that contain a central natural constant: the vacuum speed of light c. Later, it was found by experiments that the vacuum speed of light velocity c obeys a principle of constancy. This principle of the constancy of the speed of light in vacuum has a harmless part, as well as a critical one. It says that c is independent of light frequency, amplitude and polarization, as well as the speed of light-source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonini, P., Okhapkin, M., Göklü, E., Schiller, S., 2005: Test of constancy of speed of light with rotating cryogenic optical resonators, Phys. Rev., A 71, 050101.

    Google Scholar 

  • Brillouin, L., 1960: Wave Propagation and Group Velocity, Academic Press, New York.

    MATH  Google Scholar 

  • Chandrasekhar, S., Contopoulos, G., 1967: On a post-Galilean transformation appropriate to the post-Newtonian theory of Einstein, Infeld and Hoffmann, Proc. Roy. Soc. London A 298, pp. 123–141.

    Article  Google Scholar 

  • Chiao, R.Y., 1993: Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations, Phys. Rev., A 48, pp. R34–R37.

    Article  ADS  Google Scholar 

  • Eisele, Ch., Nevsky, A., Schiller, S., 2009: Laboratory Test of the Isotropy of Light Propagation at the 10−17 level, Phys. Rev. Lett., 103, 090401.

    Article  ADS  Google Scholar 

  • Enders, A., Nimtz, G., 1992: On superluminal barrier traversal, Journal De Physique I 2, pp. 1693–1698.

    Article  ADS  Google Scholar 

  • Enders, A., Nimtz, G., 1993: Photonic-tunneling experiments, Phys. Rev., B 47, pp. 9605–9609.

    Article  ADS  Google Scholar 

  • Fitzpatrick, R., 2015: Classical Electromagnetism, online: https://farside.ph.utexas.edu/teaching/jk1/Electromagnetism.pdf.

  • Haugan, M., Will, C.M., 1987: Modern Tests of Special Relativity, Physics Today 40 (5), pp. 69–76.

    Article  ADS  Google Scholar 

  • Herrmann, S., Senger A., Kovalchuk, E., Müller, H., Peters, A., 2005: Test of the Isotropy of the Speed of Light Using a Continously Rotating Optical Resonator, Phys. Rev. Lett., 95, 150401.

    Article  ADS  Google Scholar 

  • Herrmann, S., Senger, A., Möhle, K., Nagel, M., Kovalchuk, E.V., Peters, A., 2009: Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level, Phys. Rev., D 80, 105011.

    Google Scholar 

  • Jackson, J.D., 1975: Classical Electrodynamics, Wiley & Sons, New York.

    MATH  Google Scholar 

  • Klioner, S., 2008: arXiv:0803.1303v2.

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M., 1960: Electrodynamics of continuous media, Pergamon Press, London.

    MATH  Google Scholar 

  • Lighthill, M.J., 1958: Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Maxwell, J.C., 1864: II. A Dynamical Theory of the Electromagnetic Field, Proceedings of the Royal Society of London 13, pp. 531–536.

    Google Scholar 

  • Maxwell, J.C., 1865: A Dynamical Theory of the Electromagnetic Field, Philos. Trans. Roy. Soc. London 155, pp. 459–512.

    Article  ADS  Google Scholar 

  • Michelson, A.A., Morley, E.W., 1887: On the relative motion of the Earth and the luminiferous Ether, Amer. J. Sci., 34, pp. 333–345.

    Article  ADS  Google Scholar 

  • Møller, C., 1972: The Theory of Relativity, Clarendon Press, Oxford.

    Google Scholar 

  • Mojahedi, M., Schamiloglu, E., Hegeler, F., Malloy, K.J., 2000: Time domain detection of superluminal group velocity for single microwave pulses, Phys. Rev., E 62, pp. 5758–5766.

    Article  ADS  Google Scholar 

  • Mojahedi, M., Schamiloglu, E., Agi, K., Malloy, K.J., 2000b: Frequency domain detection of superluminal group velocity in a distributed bragg reflector, IEEE Journal of Quantum Electronics 36 (4), pp. 418–424.

    Article  ADS  Google Scholar 

  • Müller, H., Herrmann, S., Braxmaier, C., Schiller, S., Peters, A., 2003: Modern Michelson-Morley experinent using cryogenic optical resonators, Phys. Rev. Lett., 91, 020401.

    Article  ADS  Google Scholar 

  • Müller, H., Stanwix, P., Tobar, M., Ivanov, E., Wolf, P., Herrmann, S., Senger, A., Kovalchuk, E., Peters, A., 2007: Relativity tests by complementary rotating Michelson-Morley experiments, Phys. Rev. Lett., 99, 050401.

    Article  ADS  Google Scholar 

  • Mugnai, D., Ranfagni, A., Ronchi, L., 1998: The question of tunneling time duration: A new experimental test at microwave scale, Phys. Lett., A 247, pp. 281–286.

    Article  ADS  Google Scholar 

  • Poisson, E., Will, C., 2014: Gravity, Newtonian, Post-Newtonian, Relativistic, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Ranfagni, A., Mugnai, D., Fabeni, P., Pazzi, G.P., 1991: Delay-time measurements in nar- rowed wave-guides as a test of tunneling, Applied Physics Letters 58, pp. 774–776.

    Article  ADS  Google Scholar 

  • Ranfagni, A., Fabeni, P., Pazzi, G.P., Mugnai, D., 1993: Anomalous pulse delay in microwave propagation: A plausible connection to the tunneling time, Phys.Rev., E 48, pp. 1453–1460.

    Article  ADS  Google Scholar 

  • Salingeros, N., 1986: The Lorentz group and the Thomas precession. II. Exact results for the product of two boosts, J. Math. Phys., 27, pp. 157–162; erratum: 28, 492.

    Google Scholar 

  • Sexl, R., Urbantke, H.K., 2001: Relativity, groups, particles: special relativity and relativistic symmetry in field and particle physics, Springer, Wien.

    Book  Google Scholar 

  • Soffel, M.H., 1989: Relativity in Astrometry, Celestial Mechanics and Geodesy, Springer, Berlin.

    Google Scholar 

  • Spielmann, C., Szipöcs, R., Stingl, A., Krausz, F., 1994: Tunneling of optical pulses through photonic band gaps, Phys. Rev. Lett., 73, pp. 2308–2311.

    Article  ADS  Google Scholar 

  • Stanwix, P., Tobar, M., Wolf, P., Susli, M., Locke, C., Ivanov, E., Winterflood, J., van Kann, F., 2005: Test of Lorentz Invarianz in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators, Phs. Rev. Lett., 95, 040404.

    Article  ADS  Google Scholar 

  • Stanwix, P., Tobar, M., Wolf, P., Locke, C., Ivanov, E., 2006: Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators, Phys. Rev., D 74, 081101.

    Google Scholar 

  • Steinberg, A.M., Chiao, R.Y., 1995: Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence, Phys. Rev., A 51, pp. 3525–3528.

    Article  ADS  Google Scholar 

  • Thomas, L.H., 1926: The motion of the spinning electron, Nature (London) 117, pp. 514–514.

    Article  ADS  Google Scholar 

  • Weinberg, S., 1972: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley & Sons, New York.

    Google Scholar 

  • Wolf, P., Bize, S., Clairon, A., Luiten, A., Santarelli, G., Tobar, M., 2003: Tests of Lorentz Invariance using a Microwave Resonator, Phys. Rev. Lett., 90, 060402.

    Article  ADS  Google Scholar 

  • Wolf, P., Bize, S., Clairon, A., Santarelli, G., Tobar, M., Luiten, A., 2004: Improved test of Lorentz invariance in electrodynamics, Phys. Rev., D 70, 051902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soffel, M.H., Han, WB. (2019). Relativity. In: Applied General Relativity. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-19673-8_4

Download citation

Publish with us

Policies and ethics