Skip to main content

Light-Rays

  • Chapter
  • First Online:
Book cover Applied General Relativity

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1451 Accesses

Abstract

The theoretical basis for modelling astrometric measurements is the analysis of the light-ray equation, or the equation of null geodesics. Only for a few gravitational systems such as black-hole space-times, exact solutions for null geodesics are known. For more complex situations, e.g., for the propagation of light-rays in the gravitational field of solar system bodies, one might resort to approximation schemes such as the post-Newtonian (PN) or the post-Minkowskian approximation. At the first PN (1PN) level one approximates the exact null-geodesic trajectory x γ(t) in some suitably chosen coordinate system (ct, x) by neglecting c −3 terms, in the 2PN approximation one neglects c −5 terms. In the first post-Minkowskian approximation (1PM) one neglects G 2 terms, in the 2PM approximation G 3 terms etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following section is based upon private notes by Zschocke (2017).

References

  • Anderson, J.D., Schubert, G., 2007: Saturn’s gravitational field, internal rotation, and interior structure, Science 317, pp. 1384–1387.

    Article  ADS  Google Scholar 

  • Ashby, N., Bertotti, B., 2010: Accurate light-time correction due to a gravitating mass, Class. Quantum Grav., 27, 145013.

    Article  ADS  MathSciNet  Google Scholar 

  • Bertone, S., Minazzoli, O., Crosta, M., Le Poncin-Lafitte, C., Vecchiato, A., Angonin, M.-C., 2013: Time transfer functions as a way to validate light propagation solutions for space astrometry, Class. Quantum Grav., 31, 015021.

    Article  ADS  Google Scholar 

  • Bodenner, J., Will, C.M., 2003: Deflection of light to second order: A tool for illustrating principles of general relativity, Am. J. Phys., 71, pp. 770–773.

    Article  ADS  Google Scholar 

  • Bruegmann, M., 2005: Light deflection in the post-linear gravitational field of bounded point-like masses, Phys. Rev., D 72, 024012.

    Google Scholar 

  • Brumberg, V.A., 1987: Post-post Newtonian propagation of light in the Schwarzschild field, Kin Fiz Neb 3, pp. 8–13 (in russian).

    Google Scholar 

  • Chandrasekhar, S., 1983: The mathematical Theory of Black Holes, Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Cowling, S.A., 1984: Gravitational light deflection in the Solar System, Mon. Not. R. Astr. Soc., 209, 415.

    Article  ADS  Google Scholar 

  • de Pater, I., Lissauer, J.J., 2015: Planetary Science, 2.Ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Epstein, R., Shapiro, I.I., 1980: Post-post-Newtonian deflection of light by the Sun, Phys. Rev., D 22, pp. 2947–2949.

    Article  ADS  Google Scholar 

  • Fienga, A., Manche, H., Laskar, J., & Gastineau, M. 2008: INPOP06: a new numerical planetary ephemeris, A&A, 477, 315

    Article  ADS  Google Scholar 

  • Fischbach, E., Freeman, B.S., 1980: Second-oder contribution to the gravitational deflection of light, Phys. Rev., D 22, pp. 2950–2952.

    Article  ADS  Google Scholar 

  • Hackmann, E., Lämmerzahl, C., 2008a: Geodesic equation in Schwarzschild - (anti-) de Sitter spacetimes, Phys. Rev., D 78, 024035.

    Google Scholar 

  • Hackmann, E., Lämmerzahl, C., 2008b: Complete analytic solution of the geodesic equation in Schwarzschild (anti-) de Sitter spacetimes, Phys. Rev. Lett., 100, 171101.

    Article  ADS  MathSciNet  Google Scholar 

  • Hackmann, E., Lämmerzahl, Kagramanova, V., Kunz, J., 2010: Analytical solution of the geodesic equation in Kerr- (anti-) de Sitter spacetimes, Phys. Rev., D 81, 044020.

    Google Scholar 

  • Hackmann, E., 2014: Geodesic Equations and Algebro-Geometric Methods. In: Bicak J., Ledvinka T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham

    Google Scholar 

  • Hubbard, W.B., Militzer, B., 2016: A preliminary Jupiter model, Astron. J., 820, 80.

    Article  ADS  Google Scholar 

  • JPL, 2019: Highly accurate ephemerides for solar system objects, http://ssd.jpl.nasa.gov/

  • Klioner, S., (1989): Propagation of the Light in the Barycentric Reference System considering the Motion of the Gravitating Masses, Communications of the Institute of Applied Astronomy, No 6, pp. 1–21 (in Russian).

    Google Scholar 

  • Klioner, S., (1991a): General relativistic model of VLBI observations. In Proc. AGU Chapman Conf. on Geodetic VLBI: Monitoring Global Change, W. Carter(Ed.), NOAA Rechnical Report NOS 137 NGS 49, American Geophysical Union, Washington, D.C., 188

    Google Scholar 

  • Klioner, S., (1991b): Influence of the quadrupole field and rotation of objects on light propagation, Sov. Astron., 45(5), pp. 523–530.

    ADS  Google Scholar 

  • Klioner, S., 2003: A Practical Relativistic Model For Microarcsecond Astrometry In Space, Astron. J., 125, pp. 1580–1597.

    Article  ADS  Google Scholar 

  • Klioner, S., 2003b: Light propagation in the gravitational field of moving bodies by means of Lorentz transformation: I Mass monopoles moving with constant velocities, Astron. Astrophys., 404, pp. 783–788.

    Article  ADS  Google Scholar 

  • Klioner, S., Zschocke, S., 2010: Numerical versus analytical accuracy of the formulas for light propagation, Class. Quantum Grav., 27, 075015.

    Article  ADS  Google Scholar 

  • Kopeikin, S.M., 1997: Propagation of light in the stationary field of multipole gravitational lens, J.Math.Phys., 38 (5), pp. 2587–2601

    Article  ADS  MathSciNet  Google Scholar 

  • Kopeikin, S.M., Schäfer, G., Gwinn, C., Eubanks, T.M., 1999: Astrometric and timing effects of gravitational waves from localized sources, Phys. Rev., D 59, 084023, pp. 1–29.

    MathSciNet  Google Scholar 

  • Kopeikin, S.M., Schäfer, G., 1999: Lorentz Covariant Theory of Light Propagation in Gravitational Fields of Arbitrary-Moving Bodies, Phys. Rev., D 60, 124002.

    Google Scholar 

  • Kopeikin, S.M., Mashhoon, B., 2002: Gravitomagnetic-effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies, Phys. Rev., D 65, 064025.

    Google Scholar 

  • Kopeikin, S.M., Korobkov, P., 2005: General Relativistic Theory of Light Propagation in the Field of Radiative Gravitational Multipoles, arXiv:gr-qc/0510084v1.

    Google Scholar 

  • Kopeikin, S., Korobkov, P., Polnarev, A., 2006: Propagation of light in the field of stationary and radiative gravitational multipoles, Class. Quantum Grav., 23, pp. 4299–4322.

    Article  ADS  MathSciNet  Google Scholar 

  • Kopeikin, S.M., Makarov, V.V., 2007: Gravitational bending of light by planetary multipoles and its measurement with micro-arcsecond astronomical interferometers, Phys. Rev., D 75, 062002.

    Google Scholar 

  • Le Poncin-Lafitte, Chr., Linet, B., Teyssandier, P., 2004: World function and time transfer: general post-Minkowskian expansions, Class. Quantum Grav., 21, 4463.

    Article  ADS  MathSciNet  Google Scholar 

  • Le Poncin-Lafitte, Chr., Teyssandier, P., 2008: Influence of mass multipole moments on the deflection of a light ray by an isolated axisymmetric body, Phys. Rev., D 77 044029.

    Google Scholar 

  • Meichsner, J., 2015: Physics in gravity fields with higher spin multipole moments, Diploma Thesis, Dresden Technical University, Dresden.

    Google Scholar 

  • Richter, G.W., Matzner, R.A., 1982a: Second-order contributions to gravitational deflection of light in the parameterized post-Newtonian formalism, Phys. Rev., D 26, pp. 1219–1224.

    Article  ADS  Google Scholar 

  • Richter, G.W., Matzner, R.A., 1982b: Second-order contributions to gravitational deflection of light in the parameterized post-Newtonian formalism. II. Photon orbits and deflections in three dimensions, Phys. Rev., D 26, pp. 2549–2556.

    Google Scholar 

  • Richter, G.W., Matzner, R.A., 1983: Second-order contributions to relativistic time-delay in the parametrized post-Newtonian formalism, Phys. Rev., D 28, pp. 3007–3012.

    Article  ADS  Google Scholar 

  • Teyssandier, P., Le Poncin-Lafitte, Chr., 2008: General post-Minkowskian expansion of time transfer functions, Class. Quantum Grav., 25, 145020.

    Article  ADS  MathSciNet  Google Scholar 

  • Zschocke, S., 2015: Light propagation in the gravitational field of N arbitrarily moving bodies in 1PN approximation for high-precision astrometry, Phys. Rev., D 92, 063015.

    Google Scholar 

  • Zschocke, S., 2016a: Light propagation in the gravitational field of N arbitrarily moving bodies in the 1.5PN approximation for high-precision astrometry, Phys. Rev., D 93, 103010.

    Google Scholar 

  • Zschocke, S., 2016b: Light propagation in the field of one arbitrarily moving pointlike body in the 2PN approximation, Phys. Rev., D 94, 124007.

    Google Scholar 

  • Zschocke, S., 2018b: Light propagation in 2PN approximation in the field of one moving monopole I. Initial value problem, Class. Quantum Grav., 35, 055013.

    Article  ADS  MathSciNet  Google Scholar 

  • Zschocke, S., 2019: Light propagation in 2PN approximation in the field of one moving monopole II. Boundary value problem, Class. Quantum Grav., 36, 015007.

    Article  ADS  MathSciNet  Google Scholar 

  • Zschocke, S., Klioner, S., 2011: On the efficient computation of the quadrupole light deflection, Class. Quantum Grav., 28, 015009.

    Article  ADS  Google Scholar 

  • Zschocke, S., 2017: private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soffel, M.H., Han, WB. (2019). Light-Rays. In: Applied General Relativity. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-19673-8_11

Download citation

Publish with us

Policies and ethics