Skip to main content

The Gravitational N-Body Problem

  • Chapter
  • First Online:
Applied General Relativity

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1474 Accesses

Abstract

We now come to a relativistic formulation of the gravitational N-body problem which can be described exactly only in the frame of numerical relativity. In the general case not even the concept of a ‘body’ can be formulated rigorously because of the non-linearities of GR (the distinction between ‘self- and external-field’ of a body is a real problem).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker, B.M., O’Connell, R.F., 1975: The Gravitational Two Body Problem With Arbitrary Masses, Spins, and Quadrupole Moments, Phys. Rev., D 12, pp. 329–335.

    Article  ADS  Google Scholar 

  • Blanchet, L., Damour, T., Schäfer, G., 1990: Post-Newtonian hydrodynamics and post-Newtonian gravitational wave generation for numerical relativity, Mon. Not. R. astr. Soc., 242, pp. 289–305.

    Article  ADS  Google Scholar 

  • Blanchet, L., Faye, G., Ponsot, B., 1998: Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order, Phys. Rev., D 58, 124002-1-20.

    Google Scholar 

  • Blanchet, L., Faye, G., 2000a: Hadamard regularization, J. Math. Phys., 41, pp. 7675–7714.

    Article  ADS  MathSciNet  Google Scholar 

  • Blanchet, L., Faye, G., 2000b: On the equations of motion of point-particle binaries at the third post-Newtonian order, Phys. Lett. A 271, pp. 58–64.

    Article  ADS  MathSciNet  Google Scholar 

  • Blanchet, L., Faye, G., 2001a: General relativistic dynamics of compact binaries at the third post-Newtonian order, Phys. Rev., D 63, 062005-1-43.

    Google Scholar 

  • Blanchet, L., Faye, G., 2001b: Lorentzian regularization and the problem of point-like particles in general relativity, J. Math. Phys., 42, pp. 4391–4418.

    Article  ADS  MathSciNet  Google Scholar 

  • Born, M., 1909: Die Theorie des starren elektrons in der Kinematik des Relativitätsprinzips, Ann. Phys., 335, pp. 1–56.

    Article  Google Scholar 

  • Born, M., 1910: Zur Kinematik des starren Körpers im System des Relativitätsprinzips, Göttinger Nachrichten 2, pp. 161–179.

    MATH  Google Scholar 

  • Brumberg, V.A., 1972: Relativistic Celestial Mechanics, Nauka, Moscow (in Russian).

    MATH  Google Scholar 

  • Damour, T., 1982a: Problème des deux corps et freinage de rayonnement en relativité générale, C. R. Acad. Sci. Paris 294, série II, pp. 1355–1357.

    Google Scholar 

  • Damour, T., 1982b: Gravitational radiation and the motion of compact binaries, in Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advances Study Institute, Centre de physique des Houches, 2–21 June 1982, North-Holland, Elsevier, Amsterdam, pp. 59–144.

    Google Scholar 

  • Damour, T., 1983: Gravitational Radiation Reaction in the Binary Pulsar and the Quadrupole-Formula Controversy, Phys. Rev. Lett., 51, pp. 1019–1021.

    Article  ADS  Google Scholar 

  • Damour, T., 1987a: An Introduction to the Theory of Gravitational Radiation, in Carter, B., and Hartle, J.B., eds., Gravitation in Astrophysics: Cargese 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, July 15–31, 1986 in Cargese, France, vol. 156 of NATO ASI Series B, Plenum Press, New York, pp. 3–62.

    Chapter  Google Scholar 

  • Damour, T., 1987b: The problem of motion in Newtonian and Einsteinian gravity, in Hawking, S., and Israel, W., eds., Three Hundred Years of Gravitation, Cambridge University Press, Cambridge, pp. 128–198.

    MATH  Google Scholar 

  • Damour, T., Deruelle, N., 1981a: Generalized lagrangian of two point masses in the post-post-Newtonian approximation of general-relativity, C. R. Acad. Sci. Ser. II, 293, pp. 537–540.

    Google Scholar 

  • Damour, T., Deruelle, N., 1981b: Radiation reaction and angular momentum loss in small angle gravitational scattering, Phys. Lett., A 87, pp. 81–84.

    Article  ADS  Google Scholar 

  • Damour, T., Deruelle, N., 1985: General relativistic celestial mechanics of binary systems I. The post-Newtonian motion, Ann. Inst. Henri Poincaré 43, pp. 107–132.

    MathSciNet  MATH  Google Scholar 

  • Damour, T., Iyer, B.R., 1991a: Post-Newtonian generation of gravitational waves. II: The spin moments, Ann. Inst. Henri Poincaré 54, pp. 115–164.

    MathSciNet  MATH  Google Scholar 

  • Damour, T., Iyer, B.R., 1991b: Multipole analysis for electromagnetism and lineatized gravity with irreducible Cartesian tensors, Phys. Rev., D 43, pp. 3259–3272.

    Article  ADS  MathSciNet  Google Scholar 

  • Damour, T., Jaranowski, P., Schäfer, G., 2000: Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem, Phys. Rev., D 62, 021501-1-5, Erratum Phys. Rev., D 63, 029903.

    Google Scholar 

  • Damour, T., Jaranowski, P., Schäfer, G., 2001a: Dimensional regularization of the gravitational interaction of point masses, Phys. Lett., B 513, pp. 147–155.

    Article  ADS  Google Scholar 

  • Damour, T., Jaranowski, P., Schäfer, G., 2001b: Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries, Phys. Rev. D 63, 044021, Erratum Phys. Rev., D 66, 029901.

    Google Scholar 

  • Damour, T., Soffel, M., Xu, C., 1991: General-relativistic celestial mechanics. I. Method and definition of reference systems, Phys. Rev., D 43, pp. 3273–3307 (DSX-I).

    Article  ADS  MathSciNet  Google Scholar 

  • Damour, T., Soffel, M., Xu, C., 1993: General-relativistic celestial mechanics. III. Rotational equations of motion, Phys. Rev., D 47, pp. 3124–3135 (DSX-III).

    Article  ADS  MathSciNet  Google Scholar 

  • de Andrade, V.C., Blanchet, L., Faye, G., 2001: Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic coordinate and ADM-Hamiltonian formalisms, Class. Quantum Grav., 18, pp. 753–778.

    Article  ADS  MathSciNet  Google Scholar 

  • Epstein, R., 1977: The binary pulsar: post-Newtonian timing effects, Astrophys. J., 216, pp. 92–100; errata 231, 644.

    Article  ADS  Google Scholar 

  • Fock, V.A., 1959: The Theory of Space, Time and Gravitation, Pergamon, Oxford.

    Google Scholar 

  • Friedman, J.L., 1995; Upper limit on the rotation of relativistic stars, Millisecond Pulsars: A Decade of Surprise, ASP Conference Series, Vol. 72, 1995, A.S. Fruchter, M. Tavani, and D.C. Backer, (eds.).

    Google Scholar 

  • Friedman, J.L., Ipser, J.R., Parker, L., 1986: Rapidly rotating neutron star models, Astrophysical J., 304, pp. 115—139. Erratum: Astrophysical J., 351, p. 705.

    Google Scholar 

  • Friedman, J.L., Ipser, J.R., Parker, L., 1989, Implications of a half-millisecond pulsar, Phys.Rev.Lett., 62, pp. 3015–3019.

    Article  ADS  Google Scholar 

  • Grishuk, L.P., Kopeikin, S., 1985: Equations of motion for isolated bodies with relativistic corrections including the radiation-reaction force, in Kovalevsky, J., and Brumberg, V.A., eds., Relativity in Clestial Mechanics and Astrometry: High Precision Dynamical Theories and Observational Verifications, Proceedings of the 114th Symposium of the International Astronomical Union, St. Petersburg, May 28–31, Reidel, Dordrecht, pp. 19–34.

    Google Scholar 

  • Hartle, J., 1967: Slowly Rotating Relativistic Stars I. Equations of Structure, Astrophys. J., 150, pp. 1005–1029.

    Article  ADS  Google Scholar 

  • Hartle, J., Sharp, D.H., 1967: Variational Principle for the Equilibrium of a Relativistic, Rotating Star, Astrophys. J., 147, pp. 317–333.

    Article  ADS  Google Scholar 

  • Hartle, J., Thorne, K.S., 1968: Slowly Rotating Relativistic Stars III. Static Criterion for Stability, Astrophys. J., 153, pp. 719–726.

    Article  Google Scholar 

  • Haugan, M., 1985: Post-Newtonian arrival-time analysis for a pulsar in a binary system, Astrophys. J., 296, pp. 1–12.

    Article  ADS  Google Scholar 

  • Itoh, Y., 2004: Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order, Phys. Rev., D 69, 064018-1-43.

    Google Scholar 

  • Itoh, Y., Futamase, T., Asada, H., 2001: Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order, Phys. Rev., D 63, 064038-1-21.

    Google Scholar 

  • Itoh, Y., Futamase, T., 2003: New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity, Phys. Rev., D 68, 121501.

    Google Scholar 

  • Jaranowski, P., Schäfer, G., 1998: Third post-Newtonian higher order ADM Hamiltonian for many-body point-mass systems, Phys. Rev., D 57, pp. 7274–7291; Erratum Phys. Rev. D 63, 029902.

    Google Scholar 

  • Jaranowski, P., Schäfer, G., 1999: The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part, Phys. Rev., D 60, 124003-1-7.

    Google Scholar 

  • Jaranowski, P., Schäfer, G., 2000: The binary black-hole dynamics at the third post-Newtonian order in the orbital motion, Ann. Phys. (Berlin), 9, pp. 378–383.

    Article  ADS  MathSciNet  Google Scholar 

  • Klioner, S.A., Soffel, M., Xu, Ch., Wu, X., 2001: Earth’s rotation in the framework of general relativity: rigid multipole moments, in: Proceedings of the “Journées 2001 Systèmes de Référence Spatio-temporels” 24–26 September 2001 - Brussels, Belgium, Observatoire de Paris (https://syrte.obspm.fr/jsr/journees2001/pdf/).

  • Kopeikin, S.M., 1985: The equations of motion of extended bodies in general-relativity with conservative corrections and radiation damping taken into account, Astron. Zh., 62, pp. 889–904.

    ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M., 1971: The Classical Theory of Fields, Pergamon Press, Oxford.

    MATH  Google Scholar 

  • McCrea, J.D., O’Brien, G., 1978: Spin precession in the relativistic two-body problem, Gen. Relat. Grav., 9, pp. 1101–1118.

    Article  ADS  MathSciNet  Google Scholar 

  • Ohta, T., Okamura, H., Kimura, T., Hiida, K., 1973a: Physically acceptable solution of Einstein’s equations for the many-body system, Prog. Theor. Phys., 50, pp. 492–514.

    Article  ADS  Google Scholar 

  • Ohta, T., Okamura, H., Kimura, T., Hiida, K., 1973b: Coordinate condition and higher-order gravitational potential in canonical formalism, Prog. Theor. Phys., 51, pp. 1598–1612.

    Article  ADS  Google Scholar 

  • Ohta, T., Okamura, H., Kimura, T., Hiida, K., 1973c: Higher-order gravitational potential for many-body system, Prog. Theor. Phys., 51, pp. 1220–1238.

    Article  ADS  Google Scholar 

  • Soffel, M.H., 1989: Relativity in Astrometry, Celestial Mechanics and Geodesy, Springer, Berlin.

    Google Scholar 

  • Thorne, K., Gürsel, Y., 1983: The free precession of slowly rotating neutron stars: rigid-body motion in general relativity, Mon. Not. R. astr. Soc., 205, pp. 809–817.

    Article  ADS  Google Scholar 

  • Tulczyjew, W., 1959: Equations of motion of rotating bodies in general relativity theory, Acta Phys. Pol., 18, pp. 37–55.

    MathSciNet  MATH  Google Scholar 

  • Wagoner, R., Will, C., 1976: Post-Newtonian Gravitational Radiation From Orbiting Point Masses, Astrophys. J., 210, pp. 764–775.

    Article  ADS  Google Scholar 

  • Will, C.M., 1993: Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soffel, M.H., Han, WB. (2019). The Gravitational N-Body Problem. In: Applied General Relativity. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-19673-8_10

Download citation

Publish with us

Policies and ethics