Skip to main content

Introduction

  • Chapter
  • First Online:
Applied General Relativity

Part of the book series: Astronomy and Astrophysics Library ((AAL))

Abstract

In 1905, Albert Einstein published four papers that changed modern science fundamentally. Among them there was an article on the electrodynamics of moving bodies that laid the foundation of Special Relativity Theory (SRT). About 10 years later, Einstein revolutionized Newton’s theory of gravitation and formulated a space-time geometrized picture of the gravitational interaction: Newton’s gravitational force was replaced by the curvature of space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anselmo, L., Farinella, P., Milani, A., Nobili, A., 1983: Effects of the Earth-reflected sunlight on the orbit of LAGEOS satellite, Astron. Astrophys., 117, pp. 3–8.

    ADS  Google Scholar 

  • Ashby, N., 2004: The Sagnac Effect in the Global Positioning System. In: Rizzi G., Ruggiero M.L. (eds.) Relativity in Rotating Frames. Fundamental Theories of Physics, vol 135. Springer, Dordrecht.

    Chapter  Google Scholar 

  • Bauch, A., 2018: private communication.

    Google Scholar 

  • Belusevic, R., 2008: Relativity, Astrophysics and Cosmology, Wiley-VCH.

    Google Scholar 

  • Bloom, B., Nichelson, T., Williams, J., Campbell, S., Bishof, M., Zhang, X., Zang, W., Bromley, S., Ye, J., 2014: An optical lattice clock with accuracy and stability at the 10−18 level, Nature 506, pp. 71–75.

    Article  ADS  Google Scholar 

  • Böhmer, C.G., 2016: Introduction to General Relativity and Cosmology, World Scientific.

    Book  Google Scholar 

  • Börner, G., 2003: The Early Universe, Facts and Fiction, Springer, Berlin.

    Google Scholar 

  • Chou, C.W., Hume, D.B., Koelemeij, J.C.J., Wineland, D.J., Rosenband, T., 2010: Frequency Comparison of Two High-Accuracy Al+ Optical Clocks, Phys. Rev. Lett., 104, 070802.

    Article  ADS  Google Scholar 

  • Ciufolini, I., 1986a: Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites, Phys. Rev. Lett., 56, pp. 278–281.

    Article  ADS  Google Scholar 

  • Ciufolini, I., 1986b: Test of the Gravitomagnetic Field via Laser-Ranged Satellites, Found. Phys., 16, pp. 259–265.

    Article  ADS  Google Scholar 

  • Ciufolini, I., Pavlis, E.C., 2004: A confirmation of the general relativistic prediction of the Lense–Thirring effect, Nature 431, pp. 958–960.

    Article  ADS  Google Scholar 

  • Ciufolini, I., Paolozzi, A., Pavlis, E.C., Ries, J.C., Koenig, R., Matzner, R.A., Sindoni, G., Neumayer, H., 2010: General Relativity and John Archibald Wheeler, Astrophysics and Space Science Library, volume 367, Springer.

    Google Scholar 

  • Ciufolini,I., Paolozzi, A., Pavlis, E.C., Koenig, R., Ries, J., Gurzadyan, V., Matzner, R., Penrose, R., Sindoni, G., Paris, C., Khachatryan, H., Mirzoyan, S., 2016: A test of General Relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, Eur. Phys. J. C., 76 (3), 120.

    Article  ADS  Google Scholar 

  • Demiański, M., 2008: Relativistic Astrophysics, Cambridge University Press, Cambridge.

    Google Scholar 

  • de Sitter, W., 1917: On the relativity of inertia: Remarks concerning Einstein’s latest hypothesis. In: Proc.Kon.Ned.Acad.Wet., 19 pp. 1217–1225.

    Google Scholar 

  • Dodelson, S., 2003: Modern Cosmology, Academic Press, Cambridge, Mass.

    Google Scholar 

  • Einstein, A., 1905: Zur Elektrodynamik bewegter Körper, Ann. Phys., 17, pp. 891–921.

    Article  Google Scholar 

  • Einstein, A., 1915: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie, Sitzungsberichte Preuss. Akad. Wiss. Berlin, 1915, II, pp. 831–839.

    Google Scholar 

  • Fienga, A., Laskar, J., Morley, T., Manche, H., Kuchynka, P., Le Poncin-Lafitte, C., Budnik, F., Gastineau, M., Somenzi, L., 2009: INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron. Astrophys., 507, pp. 1675–1686.

    Article  ADS  Google Scholar 

  • Fujieda, M., Piester, D., Gotoh, T., Becker, J., Aida, M., Bauch, A., 2014: Carrier-phase Two-Way Satellite Frequency Transfer over a Very Long Baseline, Metrologia 51, pp. 253–262.

    Article  ADS  Google Scholar 

  • Giacconi, R., Ruffini, R., 2009: Physics and Astrophysics of Neutron Stars and Black Holes, 2nd edition, Cambridge Scientific Publishers, Cambridge.

    MATH  Google Scholar 

  • Groten, E., 2000: Report of Special Commission 3 of IAG. In: Johnston, K.J., McCarthy, D.D., Luzum, B.J., Kaplan, G.H. (eds.), Proc. of IAU Colloquium 180, “Towards Models and Constants for Sub-Microarcsecond Astrometry”, US Naval Observatory, Washington DC.

    Google Scholar 

  • Heinkelmann, R., Schuh, H., 2010: Very long baseline interferometry: accuracy limits and relativistic tests, in: Klioner et al., 2010.

    Google Scholar 

  • Hyong, P., 2006: Relativistic Astrophysics and Cosmology, A Primer, Springer, Berlin.

    Google Scholar 

  • Iorio, L., 2009a: Towards a 1% measurement of the Lense-Thirring effect with LARES?, Advances in Space Research 43, pp. 1148–1157.

    Article  ADS  Google Scholar 

  • Iorio, L., 2009b: Will the recently approved LARES mission be able to measure the Lense-Thirring effect at 1%?, Gen. Rel. Gravit., 41, pp. 1717–1724.

    Article  ADS  Google Scholar 

  • Kolb, E., Turner, M., 1994: The Early Universe, Taylor & Francis.

    Google Scholar 

  • Kozlov, M.G., Safranova, M.S., Crespo López-Urrutia, J.R., Schmidt, P.O., 2018: Highly charged ions, optical clocks and applications in fundamental physics, Rev. Mod. Phys. 90, 045005.

    Article  ADS  Google Scholar 

  • Lambert, S., Marcus, S., de Viron, O., 2017: Atmospheric torques and Earth’s rotation: what drove the millisecond-level length-of-day response to the 2015–2016 El Niño?, Earth Syst. Dynam., 8, pp. 1009–1017.

    Google Scholar 

  • Lense, J., 1918: Über Relativitätseinflüsse in den Mondsystemen, Astron. Nachr., 206, pp. 117–120.

    Article  ADS  Google Scholar 

  • Lense, J., Thirring, H., 1918: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Phys. Zeitschrift 19, pp. 156–163.

    MATH  Google Scholar 

  • Liddle, A., 2015: An Introduction to Modern Cosmology, 3rd edition, Wiley.

    Google Scholar 

  • Ludlow, A.D., Boyd, M.M., Ye, J., Peik, E., Schmidt, P., 2015: Optical Atomic Clocks, Rev. Mod. Phys., 87, pp. 637–701.

    Article  ADS  Google Scholar 

  • Maggiore, M., 2007: Gravitational Waves. Volume 1: Theory and Experiments, Oxford University Press, Oxford.

    Google Scholar 

  • Maggiore, M., 2018: Gravitational Waves. Volume 2: Astrophysics and Cosmology, Oxford University Press, Oxford.

    Book  Google Scholar 

  • Marrison, W.A., Horton, J.W., 1928: Precision determination of frequency, I.R.E. Proc., 16, pp. 137–154.

    Google Scholar 

  • Mashhoon, B., Hehl, F., Theis, D., 1984: J. Lense and H. Thirring, On the gravitational effects of rotating masses: The Thirring-Lense papers, Gen. Relat. Gravit., 16, pp. 711–750.

    Article  ADS  MathSciNet  Google Scholar 

  • Müller, J., Soffel, M., Klioner, S., 2008: Geodesy and relativity, J. Geod., 82, pp. 133–145.

    Article  ADS  Google Scholar 

  • Pais, A., 1992: Subtle is the Lord. The Science and Life of Albert Einstein, Oxford University Press, Oxford.

    Google Scholar 

  • Petit, G., 2003: The new IAU’2000 conventions for coordinate times and time transformations. In: N. Capitaine (Ed.), Proceedings of Les Journées 2001, Système de référence spatio-temporels, Paris Observatory, Paris.

    Google Scholar 

  • Poli, N., Oates, C.W., Gill, P., Tino, G.M., 2013: Optical atomic clocks, Rivista del Nuovo Cimento 36, 12, pp. 555–624.

    ADS  Google Scholar 

  • Rees, M., Wheeler, J.A., Ruffini, R., 1974: Black Holes, Gravitational Waves and Cosmology, Gordon & Breach.

    MATH  Google Scholar 

  • Roseveare, N.T., 1982: Mercury’s perihelion from Le Verrier to Einstein, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Rubincam, D.P., 1982: On the secular decrease in the semimajor axis of Lageos’s orbit, Celest. Mech., 26, pp. 361–382.

    Article  ADS  Google Scholar 

  • Ryden, B., 2016: Introduction to Cosmology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Schäfer, W., Pawlitzki, A., Kuhn, T., 1999: New Trends in Two-Way Time and Frequency Transfer via Satellite, in Proc. 31st Annual Precise Time and Time Interval (PTTI) Meeting, pp. 505–514.

    Google Scholar 

  • Schanner, M., 2019: private communication.

    Google Scholar 

  • Schuh, H., Dill, R., Greiner-Mai, H., Kutterer, H., Müller, J., Nothnagel, A., Richter, B., Rothacher, M., Schreiber, U., Soffel, M., 2003: Erdrotation und globale dynamische Prozesse, Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Band 32, Frankfurt am Main.

    Google Scholar 

  • Shadid-Saless, B., Yeomans, D.K., 1994: Relativistic Effects on the Motion of Asteroids and Comets, Astron. J., 107, pp. 1885–1889.

    Article  ADS  Google Scholar 

  • Soffel, M.H., 1989: Relativity in Astrometry, Celestial Mechanics and Geodesy, Springer, Berlin.

    Google Scholar 

  • Soffel M., Klioner S.A., Petit G., Wolf P., Kopeikin S.M. et al., 2003: The new IAU 2000 resolutions for astrometry, celestial mechanics and metrology in the relativistic framework: explanatory supplement, Astron. J., 126, No. 6, pp. 2687–2706.

    Article  ADS  Google Scholar 

  • Soffel, M., Langhans, R., 2013: Space-Time Reference Systems, Springer, Berlin.

    Book  Google Scholar 

  • Soffel, M., Frutos, F., 2016: On the usefulness of relativistic space-times for the description of the Earth’s gravitational field, J. Geod., 90, pp. 1345–1357.

    Article  ADS  Google Scholar 

  • Straumann, N., 2012: General Relativity and Relativistic Astrophysics, Springer, Berlin.

    Google Scholar 

  • Thirring, H., 1918: Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie, Z. Phys., 19, pp. 33–39.

    MATH  Google Scholar 

  • Thirring, H., 1921: Berichtigung zu meiner Arbeit: Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie, Z. Phys., 22, pp. 29–30.

    MATH  Google Scholar 

  • Weinberg, S., 1972: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley & Sons, New York.

    Google Scholar 

  • Weinberg, S., 2008: Cosmology, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Will, C.M., 1993: Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Zel’dovich, Ya., Novikov, I., 1997: Stars and Relativity, Dover books on physics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soffel, M.H., Han, WB. (2019). Introduction. In: Applied General Relativity. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-19673-8_1

Download citation

Publish with us

Policies and ethics