Skip to main content

Catalytic Quantum Rabi Model

  • Chapter
  • First Online:
  • 470 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Apart from fundamental interests in light–matter interaction at the USC regime, the ultrastrong coupled qubit–cavity system or quantum Rabi system (QRS) is also extensively studied for its potential impetus to speed up quantum information processing at subnanosecond timescales [1,2,3,4,5], particularly within the framework of circuit quantum electrodynamics (QED) [6].

The chief enemy of creativity is good sense.

Pablo Picasso

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    p subscript represents the QRS, while subscript 1 and 2 means qubit 1 and 2. We will adopt this representation without specifying the subscripts.

References

  1. Wang YD, Zhang P, Zhou DL, Sun CP (2004) Fast entanglement of two charge-phase qubits through nonadiabatic coupling to a large Josephson junction. Phys Rev B 70:224515

    Article  ADS  Google Scholar 

  2. Wang Y-D, Kemp A, Semba K (2009) Coupling superconducting flux qubits at optimal point via dynamic decoupling with the quantum bus. Phys Rev B 79:024502

    Article  ADS  Google Scholar 

  3. Chen C-Y (2011) Geometric phase gate based on both displacement operator and squeezed operators with a superconducting circuit quantum electrodynamics. Commun Theor Phys 56(1):91

    Article  ADS  MATH  Google Scholar 

  4. Romero G, Ballester D, Wang YM, Scarani V, Solano E (2012) Ultrafast quantum gates in circuit QED. Phys Rev Lett 108:120501

    Article  ADS  Google Scholar 

  5. Kyaw TH, Herrera-Martí DA, Solano E, Romero G, Kwek L-C (2015a) Creation of quantum error correcting codes in the ultrastrong coupling regime. Phys Rev B 91:064503

    Article  ADS  Google Scholar 

  6. Blais A, Huang R-S, Wallraff A, Girvin SM, Schoelkopf RJ (2004) Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A 69:062320

    Article  ADS  Google Scholar 

  7. Peropadre B, Forn-Díaz P, Solano E, García-Ripoll JJ (2010) Switchable ultrastrong coupling in circuit QED. Phys Rev Lett 105:023601

    Article  ADS  Google Scholar 

  8. Orgiu E, George J, Hutchison JA, Devaux E, Dayen JF, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, Pupillo G, Samori P, Ebbesen TW (2015) Conductivity in organic semiconductors hybridized with the vacuum field. Nat Mater 14(11):1123

    Article  ADS  Google Scholar 

  9. Schachenmayer J, Genes C, Tignone E, Pupillo G (2015) Cavity-enhanced transport of excitons. Phys Rev Lett 114:196403

    Article  ADS  Google Scholar 

  10. Feist J, Garcia-Vidal FJ (2015) Extraordinary exciton conductance induced by strong coupling. Phys Rev Lett 114:196402

    Article  ADS  Google Scholar 

  11. Mazzeo M, Genco A, Gambino S, Ballarini D, Mangione F, Di Stefano O, Patanè S, Savasta S, Sanvitto D, Gigli G (2014) Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes. Appl Phys Lett 104(23)

    Article  ADS  Google Scholar 

  12. Rabi II (1936) On the process of space quantization. Phys Rev 49:324

    Article  ADS  MATH  Google Scholar 

  13. Braak D (2011) Integrability of the Rabi model. Phys Rev Lett 107:100401

    Article  ADS  Google Scholar 

  14. Zheng S-B, Guo G-C (2000) Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys Rev Lett 85:2392

    Article  ADS  Google Scholar 

  15. Blais A, Gambetta JM, Wallraff A, Schuster DI, Girvin SM, Devoret MH, Schoelkopf RJ (2007) Quantum-information processing with circuit quantum electrodynamics. Phys Rev A 75:032329

    Article  ADS  Google Scholar 

  16. Majer J, Chow JM, Gambetta JM, Koch J, Johnson BR, Schreier JA, Frunzio L, Schuster DI, Houck AA, Wallraff A, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ (2007) Coupling superconducting qubits via a cavity bus. Nature 449(7161):443

    Article  ADS  Google Scholar 

  17. Zueco D, Reuther GM, Kohler S, Hänggi P (2009) Qubit-oscillator dynamics in the dispersive regime: analytical theory beyond the rotating-wave approximation. Phys Rev A 80:033846

    Article  ADS  Google Scholar 

  18. James DF, Jerke J (2007) Effective hamiltonian theory and its applications in quantum information. Can J Phys 85(6):625

    Article  ADS  Google Scholar 

  19. Gamel O, James DFV (2010) Time-averaged quantum dynamics and the validity of the effective Hamiltonian model. Phys Rev A 82:052106

    Article  ADS  Google Scholar 

  20. Schrieffer JR, Wolff PA (1966) Relation between the Anderson and Kondo Hamiltonians. Phys Rev 149:491

    Article  ADS  Google Scholar 

  21. Bretheau L, Girit CO, Pothier H, Esteve D, Urbina C (2013) Exciting Andreev pairs in a superconducting atomic contact. Nature 499(7458):312

    Article  ADS  Google Scholar 

  22. Janvier C, Tosi L, Bretheau L, Girit ÇÖ, Stern M, Bertet P, Joyez P, Vion D, Esteve D, Goffman MF, Pothier H, Urbina C (2015) Coherent manipulation of Andreev states in superconducting atomic contacts. Science 349(6253):1199

    Article  ADS  Google Scholar 

  23. Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll JJ, Solano E, Harmans CJPM, Mooij JE (2010) Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys Rev Lett 105:237001

    Article  ADS  Google Scholar 

  24. Haack G, Helmer F, Mariantoni M, Marquardt F, Solano E (2010) Resonant quantum gates in circuit quantum electrodynamics. Phys Rev B 82:024514

    Article  ADS  Google Scholar 

  25. Saira O-P, Groen JP, Cramer J, Meretska M, de Lange G, DiCarlo L (2014) Entanglement genesis by ancilla-based parity measurement in 2D circuit QED. Phys Rev Lett 112:070502

    Article  ADS  Google Scholar 

  26. Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B et al (2014) Qubit architecture with high coherence and fast tunable coupling. Phys Rev Lett 113:220502

    Article  ADS  Google Scholar 

  27. Zhang Y, Wirthwein A, Alharbi FH, Engel GS, Kais S (2016) Dark states enhance the photocell power via phononic dissipation. Phys Chem Chem Phys 18:31845

    Article  Google Scholar 

  28. Dorfman KE, Voronine DV, Mukamel S, Scully MO (2013) Photosynthetic reaction center as a quantum heat engine. Proc Natl Acad Sci 110(8):2746

    Article  ADS  Google Scholar 

  29. De Liberato S, Gerace D, Carusotto I, Ciuti C (2009) Extracavity quantum vacuum radiation from a single qubit. Phys Rev A 80:053810

    Article  ADS  Google Scholar 

  30. Beaudoin F, Gambetta JM, Blais A (2011) Dissipation and ultrastrong coupling in circuit QED. Phys Rev A 84:043832

    Article  ADS  Google Scholar 

  31. Ridolfo A, Leib M, Savasta S, Hartmann MJ (2012) Photon blockade in the ultrastrong coupling regime. Phys Rev Lett 109:193602

    Article  ADS  Google Scholar 

  32. Sete EA, Gambetta JM, Korotkov AN (2014) Purcell effect with microwave drive: Suppression of qubit relaxation rate. Phys Rev B 89:104516

    Article  ADS  Google Scholar 

  33. Govia LCG, Wilhelm FK (2015) Unitary-feedback-improved qubit initialization in the dispersive regime. Phys Rev Appl 4:054001

    Article  ADS  Google Scholar 

  34. Navarrete-Benlloch C (2015) Open systems dynamics: simulating master equations in the computer. arXiv:1504.05266

  35. Forn-Díaz P, At Institute for Quantum Computing University of Waterloo (private communication)

    Google Scholar 

  36. Niemczyk T, Deppe F, Huebl H, Menzel EP, Hocke F, Schwarz MJ, Garcia-Ripoll JJ, Zueco D, Hummer T, Solano E, Marx A, Gross R (2010) Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat Phys 6:772

    Article  Google Scholar 

  37. Kyaw TH, Allende S, Kwek L-C, Romero G (2017) Parity-preserving light-matter system mediates effective two-body interactions. Quantum Sci Technol 2(2):025007

    Article  ADS  Google Scholar 

  38. Douçot B, Feigel’man MV, Ioffe LB, Ioselevich AS (2005) Protected qubits and chern-simons theories in Josephson junction arrays. Phys Rev B 71:024505

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Ha Kyaw .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyaw, T.H. (2019). Catalytic Quantum Rabi Model. In: Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19658-5_6

Download citation

Publish with us

Policies and ethics