Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 476 Accesses

Abstract

In this chapter, we propose to construct relatively large quantum error-correcting codes (QECCs) with the superconducting circuits architecture at the ultrastrong coupling regime. We are able to create highly entangled quantum state commonly known as cluster state by generating entanglement between any pair of qubits within a fraction of a nanosecond. We coin this process “pairwise cluster state generation”.

There is no success without failure and losses.

—John C. Maxwell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remind ourselves that this is simply the Josephson phase–voltage relation.

  2. 2.

    We choose the linear magnetic sweep for simplicity. Other tuning scheme is equally valid as long as the adiabatic theorem is satisfied.

  3. 3.

    As one sees that the number of qubits and the number two-qubit gates needed for both the five-qubit and the Steane codes are in the similar order, one expects to see the similar result for the Steane code, Fig. 4.8b, as compared to the five-qubit one as seen in Fig. 4.8a. The main reason of the difference is that we have assumed the projective measurement error \(p_m =0.01\) for the three orange colored qubits.

References

  1. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press

    Google Scholar 

  2. Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77:793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86:5188

    Article  ADS  Google Scholar 

  4. Ozeri R (2013) Heisenberg limited metrology using quantum error-correction codes. arXiv:1310.3432

  5. Arrad G, Vinkler Y, Aharonov D, Retzker A (2014) Increasing sensing resolution with error correction. Phys Rev Lett 112:150801

    Article  ADS  Google Scholar 

  6. Bourassa J, Gambetta JM, Abdumalikov A, Astafiev O, Nakamura Y, Blais A (2009) Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys Rev A 80:032109

    Article  ADS  Google Scholar 

  7. Leib M, Deppe F, Marx A, Gross R, Hartmann MJ (2012) Networks of nonlinear superconducting transmission line resonators. New J Phys 14:075024

    Article  Google Scholar 

  8. Leib M, Hartmann MJ (2014) Synchronized switching in a Josephson junction crystal. Phys Rev Lett 112:223603

    Article  ADS  Google Scholar 

  9. Romero G, Ballester D, Wang YM, Scarani V, Solano E (2012) Ultrafast quantum gates in circuit QED. Phys Rev Lett 108:120501

    Article  ADS  Google Scholar 

  10. Jaynes ET, Cummings FW (1963) Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc IEEE 51:89

    Article  Google Scholar 

  11. Wang YD, Chesi S, Loss D, Bruder C (2010) One-step multiqubit Greenberger-Horne-Zeilinger state generation in a circuit QED system. Phys Rev B 81:104524

    Article  ADS  Google Scholar 

  12. Herrera-Martí DA, Rudolph T (2013) Loss tolerance with a concatenated graph state. Quant Inf Comp 13:0995

    MathSciNet  Google Scholar 

  13. Jeffrey E, Sank D, Mutus JY, White TC, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A et al (2014) Fast accurate state measurement with superconducting qubits. Phys Rev Lett 112(19):190504

    Article  ADS  Google Scholar 

  14. Niemczyk T, Deppe F, Huebl H, Menzel EP, Hocke F, Schwarz MJ, Garcia-Ripoll JJ, Zueco D, Hummer T, Solano E, Marx A, Gross R (2010) Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat Phys 6:772

    Article  Google Scholar 

  15. Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll JJ, Solano E, Harmans CJPM, Mooij JE (2010) Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys Rev Lett 105:237001

    Article  ADS  Google Scholar 

  16. Forn-Díaz P at Institute for Quantum Computing University of Waterloo (private communication)

    Google Scholar 

  17. Chow JM, Gambetta JM, Magesan E, Abraham DW, Cross AW, Johnson BR, Masluk NA, Ryan CA, Smolin JA, Srinivasan SJ et al (2014) Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat Comm 5:4015

    Article  ADS  Google Scholar 

  18. Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White TC, Mutus J, Fowler AG, Campbell B et al (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497):500

    Article  ADS  Google Scholar 

  19. Nickerson NH, Fitzsimons JF, Benjamin SC (2014) Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys Rev X 4:041041

    Google Scholar 

  20. Dennis E, Landahl A, Kitaev A, Preskill J (2002) Topological quantum memory. J Math Phys 43:4452

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Raussendorf R, Harrington J, Goyal K (2006) A fault-tolerant one-way quantum computer. Ann Phys 321:2242

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Raussendorf R, Harrington J (2007) Fault-tolerant quantum computation with high threshold in two dimensions. Phys Rev Lett 98:190504

    Article  ADS  Google Scholar 

  23. Barrett SD, Stace TM (2010) Fault tolerant quantum computation with very high threshold for loss errors. Phys Rev Lett 105:200502

    Article  ADS  Google Scholar 

  24. Wang DS, Fowler AG, Hollenberg LCL (2011) Surface code quantum computing with error rates over 1. Phys Rev A 83:020302(R)

    Article  ADS  Google Scholar 

  25. Kyaw TH, Herrera-Martí DA, Solano E, Romero G, Kwek L-C (2015) Creation of quantum error correcting codes in the ultrastrong coupling regime. Phys Rev B 91:064503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Ha Kyaw .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyaw, T.H. (2019). Quantum Error-Correcting Codes in the USC Regime. In: Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19658-5_4

Download citation

Publish with us

Policies and ethics