Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 543 Accesses

Abstract

In analogy to the cavity QED in quantum optics, the field of circuit QED deals with the study of light and matter interaction on the superconducting chip. In the place of natural atoms and optical laser as in cavity QED, we have artificial atoms and microwave photons propagating on the two-dimensional chip. As this thesis focuses on quantum computation with superconducting qubits, we will briefly look into some basics of the superconducting circuits here.

There is no greatness where there is no simplicity, goodness and truth.

—Leo Tolstoy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the thesis, it is understood that a variable with a hat on it such as \((\hat{\mathcal {O}})\) represents a quantum operator.

  2. 2.

    \(\hbar \approx 1.054\times 10^{-34}\) Joule-second.

  3. 3.

    The main advantages of various multi-Josephson junctions SQUID constructions are that they are much more compact in size and significantly reduce flux noise. In fact, quantum coherence was demonstrated experimentally first in a SQUID with a single \(E_J\)-tunable junction [17].

  4. 4.

    We recall that the node phase and node flux are related by the relation \(\varphi =\frac{2e}{\hbar }\Phi \) mod \(2\pi \).

  5. 5.

    The potential minima, enclosed by the white dashed box, repeat in period \(2\pi \). Each box is considered one cell.

References

  1. Wells DA (1938) Application of the Lagrangian equations to electrical circuits. J Appl Phys 9(5):312

    Article  ADS  Google Scholar 

  2. Devoret MH (1995) Quantum fluctuations in electrical circuits. In: Session LXIII, Les Houches, vol 7, no 8

    Google Scholar 

  3. Houck AA, Türeci HE, Koch J (2012) On-chip quantum simulation with superconducting circuits. Nat Phys 8(4):292

    Article  Google Scholar 

  4. Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. Westview Press Incorporated

    Google Scholar 

  5. Likharev KK (1986) Dynamics of Josephson junctions and circuits. Gordon and Breach Science Publishers

    Google Scholar 

  6. Doll R, Näbauer M (1961) Experimental proof of magnetic flux quantization in a superconducting ring. Phys Rev Lett 7(2):51

    Article  ADS  Google Scholar 

  7. Deaver BS Jr, Fairbank WM (1961) Experimental evidence for quantized flux in superconducting cylinders. Phys Rev Lett 7(2):43

    Article  ADS  Google Scholar 

  8. London F (1954) Superfluids. Wiley

    Google Scholar 

  9. Onsager L (1961) Magnetic flux through a superconducting ring. Phys Rev Lett 7(2):50

    Article  ADS  Google Scholar 

  10. Clarke J, Wilhelm FK (2008) Superconducting quantum bits. Nature 453(7198):1031

    Article  ADS  Google Scholar 

  11. Bouchiat V, Vion D, Joyez Ph, Esteve D, Devoret MH (1998) Quantum coherence with a single Cooper pair. Phys Scr 1998(T76):165

    Article  Google Scholar 

  12. Makhlin Y, Scöhn G, Shnirman A (1999) Josephson-junction qubits with controlled couplings. Nature 398:305

    Article  ADS  Google Scholar 

  13. Nakamura Y, Pashkin YA, Tsai JS (1999) Coherent control of macroscopic quantum states in a single-Cooper-pair box. Naure 398(6730):786

    ADS  Google Scholar 

  14. Koch J, Yu TM, Gambetta J, Houck AA, Schuster DI, Majer J, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ (2007) Charge-insensitive qubit design derived from the Cooper pair box. Phys Rev A 76:042319

    Article  ADS  Google Scholar 

  15. Orlando TP, Mooij JE, Tian L, van der Wal CH, Levitov LS, Lloyd S, Mazo JJ (1999) Superconducting persistent-current qubit. Phys Rev B 60:15398

    Article  ADS  Google Scholar 

  16. Mooij JE, Orlando TP, Levitov L, Tian L, van der Wal CH, Lloyd S (1999) Josephson persistent-current qubit. Science 285(5430):1036

    Article  Google Scholar 

  17. Friedman JR, Patel V, Chen W, Tolpygo SK, Lukens JE (2000) Quantum superposition of distinct macroscopic states. Nature 406(6791):43

    Article  ADS  Google Scholar 

  18. Paauw FG (2009) Superconducting flux qubits: quantum chains and tunable qubits. PhD thesis, TU Delft, Delft University of Technology

    Google Scholar 

  19. Martinis JM, Devoret MH, Clarke J (1985) Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys Rev Lett 55(15):1543

    Article  ADS  Google Scholar 

  20. Clarke J, Cleland AN, Devoret MH, Esteve D, Martinis JM (1988) Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239(4843):992

    Article  ADS  Google Scholar 

  21. Martinis JM, Nam S, Aumentado J, Urbina C (2002) Rabi oscillations in a large Josephson-junction qubit. Phys Rev Lett 89(11):117901

    Article  ADS  Google Scholar 

  22. Vion D, Aassime A, Cottet A, Joyez Pl, Pothier H, Urbina C, Esteve D, Devoret MH (2002) Manipulating the quantum state of an electrical circuit. Science 296(5569):886

    Google Scholar 

  23. Manucharyan VE, Koch J, Glazman LI, Devoret MH (2009) Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326(5949):113

    Article  ADS  Google Scholar 

  24. Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C et al (2013) Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys Rev Lett 111(8):080502

    Article  ADS  Google Scholar 

  25. Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B et al (2014) Qubit architecture with high coherence and fast tunable coupling. Phys Rev Lett 113:220502

    Article  ADS  Google Scholar 

  26. Gong M, Chen MC, Zheng Y, Wang S, Zha C, Deng H, Yan Z, Rong H, Wu Y, Li S et al (2018) Genuine 12-qubit entanglement on a superconducting quantum processor. arXiv:1811.02292

  27. Reagor M, Paik H, Catelani G, Sun L, Axline C, Holland E, Pop IM, Masluk NA, Brecht T, Frunzio L et al (2013) Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl Phys Lett 102(19):192604

    Article  ADS  Google Scholar 

  28. Devoret MH, Schoelkopf RJ (2013) Superconducting circuits for quantum information: an outlook. Science 339(6124):1169

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Ha Kyaw .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyaw, T.H. (2019). Basics of Superconducting Circuits Architecture. In: Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19658-5_2

Download citation

Publish with us

Policies and ethics