Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 461 Accesses

Abstract

Since its idealistic proposal to build a computing machine using quantum mechanics by the aspiring physicist, Richard P. Feynman, in the 1980s (Feynman in Int J Theor Phys 21:467, 1982 [1]), the term “quantum computer” becomes a holy grail of many physicists, computer scientists, and engineers, because it promises speedup and robust computational power over its classical counterparts.

The first step in solving a problem is to recognize that it does exist.

—Zig Ziglar

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467

    Article  MathSciNet  Google Scholar 

  2. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press

    Google Scholar 

  3. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual symposium on foundations of computer science, 1994 Proceedings. IEEE, p 124

    Google Scholar 

  4. Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 79:325

    Article  ADS  Google Scholar 

  5. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1895) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70(13):1993

    MathSciNet  MATH  Google Scholar 

  6. Bennett CH (1995) Quantum information and computation. Phys Today 48:24

    Article  Google Scholar 

  7. Bennett CH, Brassard G, Popescu S, Schumacher B, Smolin JA, Wootters WK (1996) Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett 76(5):722

    Article  ADS  Google Scholar 

  8. Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Liao S-K, Cai W-Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J-G, Liu W-Y et al (2018) Satellite-relayed intercontinental quantum network. Phys Rev Lett 120(3):030501

    Article  ADS  Google Scholar 

  10. Acin A, Bloch I, Buhrman H, Calarco T, Eichler C, Eisert J, Esteve D, Gisin N, Glaser SJ, Jelezko F et al (2018) The quantum technologies roadmap: a european community view. New J Phys 20(8):080201

    Article  Google Scholar 

  11. Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White TC, Mutus J, Fowler AG, Campbell B et al (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497):500

    Article  ADS  Google Scholar 

  12. Kelly J, Barends R, Fowler AG, Megrant A, Jeffrey E, White TC, Sank D, Mutus JY, Campbell B, Chen Y et al (2015) State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541):66

    Article  ADS  Google Scholar 

  13. Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B et al (2014) Qubit architecture with high coherence and fast tunable coupling. Phys Rev Lett 113:220502

    Article  ADS  Google Scholar 

  14. Chow JM, Gambetta JM, Magesan E, Abraham DW, Cross AW, Johnson BR, Masluk NA, Ryan CA, Smolin JA, Srinivasan SJ et al (2014) Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat Commun 5:4015

    Article  ADS  Google Scholar 

  15. Jeffrey E, Sank D, Mutus JY, White TC, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A et al (2014) Fast accurate state measurement with superconducting qubits. Phys Rev Lett 112(19):190504

    Article  ADS  Google Scholar 

  16. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM (2018) Validating quantum computers using randomized model circuits. arXiv:1811.12926

  17. Monroe C, Kim J (2013) Scaling the ion trap quantum processor. Science 339(6124):1164

    Article  ADS  Google Scholar 

  18. Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbrüggen T, Abe H, Ohshima T, Isoya J, Du JF, Neumann P et al (2014) Quantum error correction in a solid-state hybrid spin register. Nature 506(7487):204

    Article  ADS  Google Scholar 

  19. Meany T, Biggerstaff DN, Broome MA, Fedrizzi A, Delanty M, Steel MJ, Gilchrist A, Marshall GD, White AG, Withford MJ (2016) Engineering integrated photonics for heralded quantum gates. Sci Rep 6:25126

    Article  ADS  Google Scholar 

  20. Yoshikawa J-I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A (2016) Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photonics 1(6):060801

    Article  ADS  Google Scholar 

  21. Martinis JM, Devoret MH, Clarke J (1985) Energy-level quantization in the zero-voltage state of a current-biased josephson junction. Phys Rev Lett 55(15):1543

    Article  ADS  Google Scholar 

  22. Nakamura Y, Pashkin YA, Tsai JS (1999) Coherent control of macroscopic quantum states in a single-Cooper-pair box. Naure 398(6730):786

    ADS  Google Scholar 

  23. You JQ, Nori F (2003) Quantum information processing with superconducting qubits in a microwave field. Phys Rev B 68(6):064509

    Article  ADS  Google Scholar 

  24. Blais A, Huang R-S, Wallraff A, Girvin SM, Schoelkopf RJ (2004) Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A 69:062320

    Article  ADS  Google Scholar 

  25. Wallraff A, Schuster DI, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin SM, Schoelkopf RJ (2004) Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005):162

    Article  ADS  Google Scholar 

  26. Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans CJPM, Mooij JE (2004) Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431(7005):159

    Article  ADS  Google Scholar 

  27. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL (2010) Quantum computers. Nature 464(7285):45

    Article  ADS  Google Scholar 

  28. Vahala KJ (2003) Optical microcavities. Nature 424(6950):839

    Article  ADS  Google Scholar 

  29. Anappara AA, De Liberato S, Tredicucci A, Ciuti C, Biasiol G, Sorba L, Beltram F (2009) Signatures of the ultrastrong light-matter coupling regime. Phys Rev B 79:201303

    Article  ADS  Google Scholar 

  30. Gunter G, Anappara AA, Hees J, Sell A, Biasiol G, Sorba L, De Liberato S, Ciuti C, Tredicucci A, Leitenstorfer A, Huber R (2009) Sub-cycle switch-on of ultrastrong light-matter interaction. Nature 458(7235):178

    Article  ADS  Google Scholar 

  31. Todorov Y, Andrews AM, Colombelli R, De Liberato S, Ciuti C, Klang P, Strasser G, Sirtori C (2010) Ultrastrong light-matter coupling regime with polariton dots. Phys Rev Lett 105:196402

    Article  ADS  Google Scholar 

  32. Scalari G, Maissen C, Turčinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J (2012) Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz Metamaterial. Science 335(6074):1323

    Article  ADS  Google Scholar 

  33. Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll JJ, Solano E, Harmans CJPM, Mooij JE (2010) Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys Rev Lett 105:237001

    Article  ADS  Google Scholar 

  34. Niemczyk T, Deppe F, Huebl H, Menzel EP, Hocke F, Schwarz MJ, Garcia-Ripoll JJ, Zueco D, Hummer T, Solano E, Marx A, Gross R (2010) Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat Phys 6:772

    Article  Google Scholar 

  35. Schwartz T, Hutchison JA, Genet C, Ebbesen TW (2011) Reversible switching of ultrastrong light-molecule coupling. Phys Rev Lett 106(19):196405

    Article  ADS  Google Scholar 

  36. Zhang X, Zou C-L, Jiang L, Tang HX (2014) Strongly coupled magnons and cavity microwave photons. Phys Rev Lett 113(15):156401

    Article  ADS  Google Scholar 

  37. George J, Wang S, Chervy T, Canaguier-Durand A, Schaeffer G, Lehn J-M, Hutchison JA, Genet C, Ebbesen TW (2015) Ultra-strong coupling of molecular materials: spectroscopy and dynamics. Faraday Discuss 178:281

    Article  ADS  Google Scholar 

  38. George J, Chervy T, Shalabney A, Devaux E, Hiura H, Genet C, Ebbesen TW (2016) Multiple rabi splittings under ultrastrong vibrational coupling. Phys Rev Lett 117(15):153601

    Article  ADS  Google Scholar 

  39. Forn-Díaz P, García-Ripoll JJ, Peropadre B, Orgiazzi J-L, Yurtalan MA, Belyansky R, Wilson CM, Lupascu A (2017) Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat Phys 13:39

    Article  Google Scholar 

  40. Gao W, Li X, Bamba M, Kono J (2018) Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton-polaritons. Nat Photonics 12:362

    Article  ADS  Google Scholar 

  41. Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, Semba K (2017) Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat Phys 13:44

    Article  Google Scholar 

  42. Ciuti C, Bastard G, Carusotto I (2005) Quantum vacuum properties of the intersubband cavity polariton field. Phys Rev B 72:115303

    Article  ADS  Google Scholar 

  43. Ciuti C, Carusotto I (2006) Input-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters. Phys Rev A 74:033811

    Article  ADS  Google Scholar 

  44. Devoret MH, Girvin S, Schoelkopf RJ (2007) Circuit-QED: how strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann Phys 16(10):767

    Article  MATH  Google Scholar 

  45. Bourassa J, Gambetta JM, Abdumalikov A, Astafiev O, Nakamura Y, Blais A (2009) Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys Rev A 80:032109

    Article  ADS  Google Scholar 

  46. Hagenmüller D, De Liberato S, Ciuti C (2010) Ultrastrong coupling between a cavity resonator and the cyclotron transition of a two-dimensional electron gas in the case of an integer filling factor. Phys Rev B 81:235303

    Article  ADS  Google Scholar 

  47. Nataf P, Ciuti C (2010a) Vacuum degeneracy of a circuit QED system in the ultrastrong coupling regime. Phys Rev Lett 104:023601

    Article  ADS  Google Scholar 

  48. Douçot B, Feigel’man MV, Ioffe LB, Ioselevich AS (2005) Protected qubits and chern-simons theories in Josephson junction arrays. Phys Rev B 71:024505

    Article  ADS  Google Scholar 

  49. Nataf P, Ciuti C (2011) Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED. Phys Rev Lett 107:190402

    Article  ADS  Google Scholar 

  50. Felicetti S, Douce T, Romero G, Milman P, Solano E (2015) Parity-dependent state engineering and tomography in the ultrastrong coupling regime. Sci Rep 5:11818

    Article  ADS  Google Scholar 

  51. Lolli J, Baksic A, Nagy D, Manucharyan VE, Ciuti C (2015) Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics. Phys Rev Lett 114:183601

    Article  ADS  Google Scholar 

  52. Rossatto DZ, Felicetti S, Eneriz H, Rico E, Sanz M, Solano E (2016) Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics. Phys Rev B 93:094514

    Article  ADS  Google Scholar 

  53. Rabi II (1936) On the process of space quantization. Phys Rev 49:324

    Article  ADS  MATH  Google Scholar 

  54. Braak D (2011) Integrability of the Rabi model. Phys Rev Lett 107:100401

    Article  ADS  Google Scholar 

  55. Casanova J, Romero G, Lizuain I, García-Ripoll JJ, Solano E (2010) Deep strong coupling regime of the Jaynes-Cummings model. Phys Rev Lett 105:263603

    Article  ADS  Google Scholar 

  56. Knill E, Laflamme R, Viola L (2000) Theory of quantum error correction for general noise. Phys Rev Lett 84(11):2525

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52(4):R2493

    Article  ADS  Google Scholar 

  58. Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77:793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Gottesman D (1998) Theory of fault-tolerant quantum computation. Phys Rev A 57:127

    Article  ADS  Google Scholar 

  60. Romero G, Ballester D, Wang YM, Scarani V, Solano E (2012) Ultrafast quantum gates in circuit QED. Phys Rev Lett 108:120501

    Article  ADS  Google Scholar 

  61. Pritchett EJ, Geller MR (2005) Quantum memory for superconducting qubits. Phys Rev A 72:010301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Reim KF, Michelberger P, Lee KC, Nunn J, Langford NK, Walmsley IA (2011) Single-photon-level quantum memory at room temperature. Phys Rev Lett 107(5):053603

    Article  ADS  Google Scholar 

  63. Saito S, Zhu X, Amsüss R, Matsuzaki Y, Kakuyanagi K, Shimo-Oka T, Mizuochi N, Nemoto K, Munro WJ, Semba K (2013) Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states. Phys Rev Lett 111(10):107008

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Ha Kyaw .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyaw, T.H. (2019). Introduction. In: Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19658-5_1

Download citation

Publish with us

Policies and ethics