Skip to main content

Multi-robot User Interface for Cooperative Transportation Tasks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11487))

Abstract

In this research we attempt to build a user interface for controlling a group of omnidirectional robots to realize the transportation of convex shape edge objects. Our method establishes a manual guidance to the robots initial positions, initializes the collective grasping/lifting process and finally, provides the user with a high level control over the velocity of the load during transportation to the required destination. The hardware and software structure of the system are described and a simulation is performed to convey the data from the robots sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2015). https://doi.org/10.1016/j.neucom.2015.05.116

    Article  Google Scholar 

  2. Dai, Y., Kim, Y., Wee, S., Lee, D., Lee, S.: Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control. ISA Trans. 60, 321–332 (2016). https://doi.org/10.1016/j.isatra.2015.11.017

    Article  Google Scholar 

  3. Farivarnejad, H., Wilson, S., Berman, S.: Decentralized sliding mode control for autonomous collective transport by multi-robot systems. In: 2016 IEEE 55th Conference on Decision and Control, CDC 2016, pp. 1826–1833. IEEE, December 2016. https://doi.org/10.1109/CDC.2016.7798530

  4. Groß, R., Mondada, F., Dorigo, M.: Transport of an object by six pre-attached robots interacting via physical links. In: 2006 Proceedings of IEEE International Conference on Robotics and Automation, pp. 1317–1323 (2006). https://doi.org/10.1109/ROBOT.2006.1641891

  5. Groß, R., Tuci, E., Dorigo, M., Bonani, M., Mondada, F.: Object transport by modular robots that self-assemble. In: 2006 Proceedings of IEEE International Conference on Robotics and Automation, pp. 2558–2564 (2006)

    Google Scholar 

  6. Michel, O.: Cyberbotics Ltd. webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 39–42 (2004). https://doi.org/10.5772/5618

    Article  Google Scholar 

  7. Ponce-Hinestroza, A.N., Castro-Castro, J.A., Guerrero-Reyes, H.I., Parra-Vega, V., Olguin-Diaz, E.: Cooperative redundant omnidirectional mobile manipulators: model-free decentralized integral sliding modes and passive velocity fields. In: 2016 Proceedings of IEEE International Conference on Robotics and Automation, vol. 2016-June, pp. 2375–2380. IEEE (2016). https://doi.org/10.1109/ICRA.2016.7487387

  8. Shepherd, S., Buchstab, A.: KUKA robots on-site. In: McGee, W., de Ponce Leon, M. (eds.) Robotic Fabrication in Architecture, Art and Design 2014, pp. 373–380. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04663-1_26

    Chapter  Google Scholar 

  9. Tuci, E., Alkilabi, M.H.M., Akanyeti, O.: Cooperative object transport in multi-robot systems: a review of the state-of-the-art. Front. Robot. AI 5, 59 (2018)

    Article  Google Scholar 

  10. Wan, W., Shi, B., Wang, Z., Fukui, R.: Multirobot object transport via robust caging (2017). https://doi.org/10.1109/TSMC.2017.2733552

  11. Wang, Z., Yang, G., Su, X., Schwager, M.: OuijaBots: omnidirectional robots for cooperative object transport with rotation control using no communication. In: Groß, R., et al. (eds.) Distributed Autonomous Robotic Systems. SPAR, vol. 6, pp. 117–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73008-0_9

    Chapter  Google Scholar 

  12. Watanabe, K.: Control of an omnidirectional mobile robot. In: Proceedings of the 2nd International Conference on Knowledge-Based Intelligent Electronic Systems, pp. 51–60 (2002). https://doi.org/10.1109/kes.1998.725827. http://mate.tue.nl/mate/pdfs/7566.pdf

  13. Yogeswaran, M., Ponnambalam, S.: Swarm robotics: an extensive research review. In: Advanced Knowledge Application in Practice, pp. 259–278. InTech/Sciyo, November 2010. https://doi.org/10.5772/10361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majd Kassawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kassawat, M., Cervera, E., del Pobil, A.P. (2019). Multi-robot User Interface for Cooperative Transportation Tasks. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science(), vol 11487. Springer, Cham. https://doi.org/10.1007/978-3-030-19651-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19651-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19650-9

  • Online ISBN: 978-3-030-19651-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics