Skip to main content

Knowledge Acquisition Through Human Demonstration for Industrial Robotic Assembly

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 980))

Included in the following conference series:

Abstract

With the ambition to introduce robots into assembly lines, not suitable for classical automation, the ease of robot programming is becoming more significant then ever. This paper proposes using various approaches for gaining knowledge from human demonstrations. This knowledge is applied to perform assembly tasks in a industrial robotic cell. Real industrial use case is used for evaluation of proposed approaches. It shows their viability and presents different scenarios which call for different approaches of learning and execution of assembly tasks and its subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends Cogn. Sci. 6(11), 481–487 (2002)

    Article  Google Scholar 

  2. Dillmann, R.: Teaching and learning of robot tasks via observation of human performance. Robot. Auton. Syst. 47(2), 109–116 (2004)

    Article  MathSciNet  Google Scholar 

  3. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, Secaucus, NJ, USA, pp. 1371–1394. Springer (2008)

    Chapter  Google Scholar 

  4. Ude, A., Atkeson, C.G., Riley, M.: Programming full-body movements for humanoid robots by observation. Robot. Auton. Syst. 47(2), 93–108 (2004)

    Article  Google Scholar 

  5. Pollard, N.S., Hodgins, J.K., Riley, M.J., Atkeson, C.G.: Adapting human motion for the control of a humanoid robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Washington, DC, USA, pp. 1390–1397 (2002)

    Google Scholar 

  6. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  7. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Und. 104(2), 90–126 (2006)

    Article  Google Scholar 

  8. Hersch, M., Guenter, F., Calinon, S., Billard, A.: Dynamical system modulation for robot learning via kinesthetic demonstrations. IEEE Trans. Robot. 24(6), 1463–1467 (2008)

    Article  Google Scholar 

  9. Deniša, M., Ude, A.: Synthesis of new dynamic movement primitives through search in a hierarchical database of example movements. Int. J. Adv. Robot. Syst. 12(10), 137 (2015)

    Article  Google Scholar 

  10. Ude, A., Nemec, B., Petrič, T., Morimoto, J.: Orientation in cartesian space dynamic movement primitives. In: IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp. 2997–3004 (2014)

    Google Scholar 

  11. Schaal, S., Mohajerian, P., Ijspeert, A.: Dynamics systems vs. optimal control-a unifying view. Prog. Brain Res. 165, 425–445 (2007)

    Article  Google Scholar 

  12. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gašpar, T., Ridge, B., Bevec, R., Bem, M., Kovač, I., Ude, A., Gosar, Z.: Rapid hardware and software reconfiguration in a robotic workcell. In: 18th International Conference on Advanced Robotics (ICAR), pp. 229–236 (2017)

    Google Scholar 

  14. Simulink Real-Time - Simulink - MATLAB & Simulink. https://www.mathworks.com/products/simulink-real-time.html. Accessed 16 Mar 2017

  15. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan (2009)

    Google Scholar 

  16. MongoDB. https://www.mongodb.com/. Accessed 4 Feb 2019

Download references

Acknowledgment

This work has received funding from the EU’s Horizon 2020 IA ReconCell (GA no. 680431) and from GOSTOP programme C3330-16-529000 co-financed by Slovenia and EU under ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timotej Gašpar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gašpar, T., Deniša, M., Ude, A. (2020). Knowledge Acquisition Through Human Demonstration for Industrial Robotic Assembly. In: Berns, K., Görges, D. (eds) Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-19648-6_40

Download citation

Publish with us

Policies and ethics