Skip to main content

Neural Adaptive Control of a Robot Joint Using Secondary Encoders

  • Conference paper
  • First Online:
Book cover Advances in Service and Industrial Robotics (RAAD 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 980))

Included in the following conference series:

Abstract

This paper aims to reduce gearbox errors on industrial robots with a feed forward, neural adaptive control. The algorithm combines two networks, one for control and one for system identification. In order to achieve a high precision and generality on untrained data, a Runge-Kutta Neural Network is used for black-box identification of a nonlinear robot joint. Secondary encoders as additional angle sensors measure the gearbox error and are used for supervised learning. The presented algorithm is capable of online application and reduces gearbox errors in a nonlinear simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abele, E. (ed.): Spanende Bearbeitung mit Industrierobotern: Forschungsprojekt ADVOCUT - Entwicklungen und Industrietransfer. Abschlußbericht BMBF-Verbundprojekt. Meisenbach, Bamberg (2007)

    Google Scholar 

  2. Thümmel, M.: Modellbasierte Regelung mit nichtlinearen inversen Systemen. Dissertation, Technische Universität München (2006)

    Google Scholar 

  3. Rösch, O.: Steigerung der Arbeitsgenauigkeit bei der Fräsbearbeitung metallischer Werkstoffe mit Industrierobotern. Dissertation, Technische Universität München (2015)

    Google Scholar 

  4. Uhlmann, E., Reinkober, S., Hollerbach, T.: Erhöhung der genauigkeit beim fräsen mit industrierobotern. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 113(9), 576–579 (2018)

    Article  Google Scholar 

  5. Devlieg, R.: High-accuracy robotic drilling/milling of 737 inboard flaps. SAE Int. J. Aerosp. 4(2), 1373–1379 (2011)

    Article  Google Scholar 

  6. Belz, S.: Nichtlineare Modellierung, flachheitsbasierte Vorsteuerung und abtriebsseitige Regelung eines Robotergelenkes. Technische Universität Kaiserslautern, Studienarbeit (2018)

    Google Scholar 

  7. Hagan, M., Demuth, H.: Neural networks for control. In: Proceedings of the American Control Conference (1999)

    Google Scholar 

  8. Polycarpou, M.M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447–451 (1996)

    Article  MathSciNet  Google Scholar 

  9. Efe, M., Kaynak, O.: A comparative study of neural network structures in identification of nonlinear systems. Mechatronics (1998)

    Google Scholar 

  10. Wang, Y.J., Lin, C.T.: Runge-kutta neural network for identification of dynamical systems in high accuracy. IEEE Trans. Neural Networks 9(2), 294–307 (1998)

    Article  MathSciNet  Google Scholar 

  11. Deflorian, M.: Versuchsplanung und Methoden zur Identifikation zeitkontinuierlicher Zustandsraummodelle am Beispiel des Verbrennungsmotors. Dissertation, Technische Universität München (2011)

    Google Scholar 

  12. Suykens, J., Vandewalle, J.: Absolute stability criterion for a lur’e problem with multilayer perceptron nonlinearity. In: International Workshop on Nonlinear Dynamics of Electronic Systems (1996)

    Google Scholar 

  13. Reiner, M.: Modellierung und Steuerung von strukturelastischen Robotern. Dissertation, Technische Universität München (2010)

    Google Scholar 

  14. Kurze, M.: Modellbasierte Regelung von Robotern mit elastischen Gelenken ohne abtriebsseitige Sensorik. Dissertation, Technische Universität München (2008)

    Google Scholar 

  15. Suykens, J., de Moor, B.L.R., Vandewalle, J.: NLq theory: a neural control framework with global asymptotic stability criteria. J. Neural Netw. 10(4), 615–637 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Weigand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weigand, J., Volkmann, M., Ruskowski, M. (2020). Neural Adaptive Control of a Robot Joint Using Secondary Encoders. In: Berns, K., Görges, D. (eds) Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-19648-6_18

Download citation

Publish with us

Policies and ethics