Skip to main content

Modelling and Optimization of Alpha-set Sand Moulding System Using Statistical Design of Experiments and Evolutionary Algorithms

  • Chapter
  • First Online:
Optimization of Manufacturing Processes

Abstract

The traditional trial-and error method applied to derive empirical relation and optimize the process is time consuming and results in reduced productivity, high rejection and cost. Hence, current research in foundries focussed towards development of statistical modelling and optimization tools. The present research work is focused on modelling and optimization of Alpha-set moulding sand system. The variables such as percent of resin and hardener, and curing time will influence the sand mould properties, namely, compression strength, permeability, mould hardness, gas evolution and collapsibility. Experimental data is collected as per CCD design matrix and non-linear models have been developed for all responses. The behaviour of all responses is studied by utilizing surface plots. The statistical adequacy of all models is tested with help of ANOVA. All responses are tested for their prediction capacity with the help of test cases. The predictive non-linear models, developed for the process resulted in average deviation of less than 5%. The optimization (GA, PSO, DFA and TLBO) tools are applied to optimize the process for conflicting requirements in sand mould properties. Six case studies with different combination of weight fractions assigned to sand mould properties are considered. The optimum solution correspond to highest composite desirability value is selected. TLBO outperformed other optimization tools (i.e. GA, PSO, and DFA) while determining the highest desirability value and resulted in optimized sand mould properties. Experiments are conducted for the optimized and normal (i.e. lowest desirability) sand mould conditions. Castings are prepared by pouring molten LM20 alloy to the prepared moulds. The casting obtained for the optimized sand mould condition resulted in a better casting quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holtzer M, Dańko R, Żymankowska-Kumon S (2014) The state of art and foresight of world’s casting production. Metalurgija Metall 53:697–700

    Google Scholar 

  2. Chojecki A, Mocek J (2011) Gas pressure in sand mould poured with cast iron. Arch Foundry Eng 11:9–14

    Google Scholar 

  3. Alonso-Santurde R, Coz A, Quijorna N, Viguri JR, Andres A (2010) Valorization of foundry sand in clay bricks at industrial scale. J Ind Ecol 14(2):217–230

    Article  Google Scholar 

  4. Bobrowski A, Grabowska B (2012) The impact of temperature on furan resin and binder structure. Metall Foundry Eng 38(1):73–80

    Article  Google Scholar 

  5. Holtzer M, Zymankowska-Kumon S, Bobrowski A, Kmita A, Dańko R (2015) Influence of the reclaim addition to the moulding sand matrix obtained in the ALPHASET technology on the emission of gases—comparison with moulding sand with furfuryl resin. Arch Foundry Eng 15(1):121–125

    Google Scholar 

  6. Vasková I, Smolková M, Malik J, Eperješi Š (2008) Experience in forming and core mixtures by Alphaset technology. Arch Foundry Eng 8(2):141–144

    Google Scholar 

  7. Mocek J, Samsonowicz J (2011) Changes of gas pressure in sand mould during cast iron pouring. Arch Foundry Eng 11(4):87–92

    Google Scholar 

  8. Holtzer M, Dańko R, Górny M (2016) Influence of furfuryl moulding sand on flake graphite formation in surface layer of ductile iron castings. Int J Cast Met Res 29(1–2):17–25

    Article  Google Scholar 

  9. Major-Gabrys K, StM Dobosz, Jakubski J (2011) The estimation of harmfulness for environment of moulding sand with biopolymer binder based on polylactide. Arch Foundry Eng 11:69–72

    Google Scholar 

  10. Izdebska-Szanda I, Szanda M, Matuszewski S (2011) Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys. Arch Foundry Eng 11(1):43–48

    Google Scholar 

  11. Roy T (2013) Analysis of casting defects in foundry by computerised simulations (CAE)—a new approach along with some industrial case studies. In: Transactions of 61st Indian Foundry Congress 2013, pp 1–9

    Google Scholar 

  12. Parappagoudar MB, Pratihar DK, Datta GL (2006) Non-linear modelling using central composite design to predict green sand mould properties. Proc IMechE Part-B J. Eng Manuf 221, 881–895

    Article  Google Scholar 

  13. Reddy NS, Yong-Hyun B, Seong-Gyeong K, Young HB (2014) Estimation of permeability of green sand mould by performing sensitivity analysis on neural networks model. J Korea Foundry Soc 34(3):107–111

    Article  Google Scholar 

  14. Surekha B, Kaushik LK, Panduy AK, Vundavilli PR, Parappagoudar MB (2012) Multi-objective optimization of green sand mould system using evolutionary algorithms. Int J Adv Manuf Technol 58(1–4):9–17

    Article  Google Scholar 

  15. Nastac Laurentiu, Jia Shian, Nastac Mihaela N, Wood Robert (2016) Numerical modelling of the gas evolution in furan binder-silica sand mold castings. Int J Cast Met Res 29(4):194–201

    Article  Google Scholar 

  16. Holtzer M, Bobrowski A, Danko R, Kmita A, Zymankowska-kumon S, Kubecki M, Gorny M (2014) Emission of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylene (BTEX) from the furan moulding sands with addition of the reclaim. Metalurgija 53(4):451–454

    Google Scholar 

  17. Danko R, Gorny M, Holtzer M, Zymankowska-kumon S (2014) Effect of the quality of furan moulding sand on the skin layer of ductile iron castings. ISIJ Int 54(6):1288–1293

    Article  Google Scholar 

  18. Kaminska J, Kmita A, Kolczyk J, Malatynska (2012) Strength parameters and a mechanical reclamation together with the management of its by-products. Metall Foundry Eng 38(2):171–178

    Article  Google Scholar 

  19. Khandelwal H, Ravi B (2016) Effect of molding parameters on chemically bonded sand mold properties. J Manuf Processes 22:127–133

    Article  Google Scholar 

  20. Ajibola OO, Oloruntoba DT, Adewuyi BO (2015) Effects of moulding sand permeability and pouring temperatures on properties of cast 6061 aluminium alloy. Int J Metals. Article ID 632021. http://dx.doi.org/10.1155/2015/632021

  21. Bargaoui H, Azzouz F, Thibault D, Cailletau G (2017) Thermomechanical behavior of resin bonded foundry sand cores during casting. J Mater Process Technol 246:30–41

    Article  Google Scholar 

  22. Johnston RE (1964) Statistical methods in foundry experiments. AFS Trans 72:13–24

    Google Scholar 

  23. Dabade UA, Bhedasgaonkar RC (2013) Casting defect analysis using design of experiments (DOE) and computer aided casting simulation technique. Procedia CIRP 7:616–621

    Article  Google Scholar 

  24. Acharya SG, Vadher JA, Sheladiya M (2016) A furan no-bake binder system analysis for improved casting quality. Int J Metalcast 10(4):491–499

    Article  Google Scholar 

  25. Parappagoudar MB, Pratihar DK, Datta GL (2007) Linear and non-linear statistical modelling of green sand mould system. Int J Cast Met Res 20(1):1–13

    Article  Google Scholar 

  26. Surekha B Hanumantha, Rao D, Krishna G, Rao M, Vundavilli PR, Parappagoudar MB (2012) Modeling and analysis of resin bonded sand mould system using design of experiments and central composite design. J Manuf Sci Prod 12:31–50

    Google Scholar 

  27. Parappagoudar MB, Pratihar DK, Datta GL (2011) Modeling and analysis of sodium silicate-bonded moulding sand system using design of experiments and response surface methodology. J Manuf Sci Prod 11(1–3):1–14

    Google Scholar 

  28. Chate GR, Patel GCM, Deshpande AS, Parappagoudar MB (2017) Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. Proc IMechE Part E: J Process Mech Eng. https://doi.org/10.1177/0954408917728636

    Article  Google Scholar 

  29. Majumder A, Majumder A (2015) Application of standard deviation method integrated PSO approach in optimization of manufacturing process parameters. In Handbook of research on artificial intelligence techniques and algorithms, pp 536–563. IGI Global

    Google Scholar 

  30. Rao RV, Savsani VJ (2012). Mechanical design optimization using advanced optimization techniques. Springer, London. https://doi.org/10.1007/978-1-4471-2748-2

    Book  Google Scholar 

  31. Rao RV (2010) Advanced modeling and optimization of manufacturing processes: international research and development. Springer Science & Business Media

    Google Scholar 

  32. Rao RV, Waghmare GG (2014) Complex constrained design optimisation using an elitist teaching-learning-based optimisation algorithm. Int J Metaheuristics 3(1):81–102

    Article  Google Scholar 

  33. Patel GCM, Krishna P, Parappagoudar MB (2016) Modelling of squeeze casting process: conventional statistical regression analysis approach. Appl Math Model 40(15):6869–6888

    Article  Google Scholar 

  34. Patel GCM, Krishna P, Parappagoudar MB, Vundavilli PR (2016) Multi-objective optimization of squeeze casting process using evolutionary algorithms. Int J Swarm Intell Res (IJSIR) 7(1):55–74

    Article  Google Scholar 

  35. Rao RV, Kalyankar VD, Waghmare G (2014) Parameters optimization of selected casting processes using teaching–learning-based optimization algorithm. Appl Math Model 38(23):5592–5608

    Article  Google Scholar 

  36. Venkata Rao R, Kalyankar VD (2012) Parameter optimization of machining processes using a new optimization algorithm. Mater Manuf Processes 27(9):978–985

    Article  Google Scholar 

  37. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12(4):214–219

    Article  Google Scholar 

  38. Maji K, Pratihar DK, Nath AK (2013) Experimental investigations and statistical analysis of pulsed laser bending of AISI 304 stainless steel sheet. Opt Laser Technol 49:18–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Manjunath Patel .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Test Case Data for Sand Moulding Variables and Moulding Sand Properties

Test no.

Moulding sand variables

Moulding sand properties

% of resin

% of hardener

Curing time

CS, KPa

P

MH

CP, KPa

GE, ml/gm

1

1.85

0.20

064

212.4

187.3

62.04

142.2

8.40

2

2.20

0.25

118

376.8

138.6

76.74

256.8

8.34

3

1.90

0.30

106

360.7

134.3

73.28

258.9

7.82

4

1.95

0.35

074

367.3

120.2

71.20

256.3

7.73

5

1.80

0.35

089

271.8

159.9

72.48

216.0

8.02

6

2.10

0.30

102

414.0

108.4

79.84

290.4

8.72

7

1.95

0.25

096

332.2

142.8

76.23

260.6

8.21

8

2.20

0.40

063

381.6

100.7

74.03

286.7

9.45

9

2.15

0.20

074

361.1

121.3

75.32

292.4

9.20

10

2.05

0.35

096

428.8

99.8

78.13

289.7

8.63

11

1.85

0.30

088

276.3

164.3

72.38

218.9

8.04

12

2.20

0.25

112

350.8

132.4

75.30

280.1

8.80

13

1.80

0.25

092

247.8

182.7

65.23

151.5

8.38

14

2.05

0.35

078

402.5

101.4

76.40

278.7

8.08

Appendix 2: Summary Results of Model Predicted Test Cases of Sand Mould Properties (CS, P, MH, GE and CP)

Test no.

Compression strength, KPa

Permeability

Exp. value

Model prediction

Deviation (%)

Absolute deviation (%)

Exp. value

Model prediction

Deviation (%)

Absolute deviation (%)

1

212.4

225.17

−6.01

−6.01

187.3

178.10

4.91

4.91

2

376.8

355.63

5.62

5.62

138.6

134.00

3.32

3.32

3

360.7

342.85

4.95

4.95

134.3

137.19

−2.15

2.15

4

367.3

356.35

2.98

2.98

120.2

124.92

−3.93

3.93

5

271.8

282.86

−4.07

−4.07

159.9

157.17

1.71

1.71

6

414.0

389.05

6.03

6.03

108.4

115.54

−6.59

6.59

7

332.2

343.86

−3.51

−3.51

142.8

135.50

5.11

5.11

8

381.6

390.71

−2.39

−2.39

100.7

106.22

−5.48

5.48

9

361.1

374.83

−3.80

−3.80

121.3

114.94

5.24

5.24

10

428.8

401.94

6.26

6.26

99.8

107.21

−7.43

7.43

11

276.3

294.49

−6.58

−6.58

164.3

154.15

6.18

6.18

12

350.8

360.63

−2.80

−2.80

132.4

130.08

1.75

1.75

13

247.8

239.59

3.31

3.31

182.7

178.71

2.18

2.18

14

402.5

391.30

2.78

2.78

101.4

109.90

−8.38

8.38

 

Mould hardness

Collapsibility

1

62.04

64.69

−4.27

4.27

142.2

155.8

−9.53

9.53

2

76.74

75.92

1.06

1.06

256.8

267.1

−4.02

4.02

3

73.28

74.88

−2.18

2.18

258.9

252.3

2.56

2.56

4

71.20

73.98

−3.91

3.91

256.3

272.5

−6.33

6.33

5

72.48

71.16

1.82

1.82

216.0

204.5

5.34

5.34

6

79.84

77.21

3.29

3.29

290.4

296.2

−2.01

2.01

7

76.23

74.05

2.86

2.86

260.6

254.5

2.34

2.34

8

74.03

74.40

−0.50

0.50

286.7

292.5

−2.03

2.03

9

75.32

74.40

1.22

1.22

292.4

290.4

0.67

0.67

10

78.13

77.23

1.15

1.15

289.7

308.5

−6.47

6.47

11

72.38

71.68

0.97

0.97

218.9

212.7

2.84

2.84

12

75.30

76.08

−1.03

1.03

280.1

271.7

2.98

2.98

13

65.23

68.40

−4.87

4.87

151.5

158.3

−4.48

4.48

14

76.40

76.01

0.52

0.52

278.7

300.8

−7.94

7.94

Appendix 3: Summary Results of the Test Cases for the Responses—GE

Test no.

Exp. value

Model prediction

Deviation (%)

Absolute deviation (%)

1

8.40

8.52

−1.37

1.37

2

8.34

8.16

2.12

2.12

3

7.82

8.14

−4.05

4.05

4

7.73

7.70

0.41

0.41

5

8.02

8.13

−1.34

1.34

6

8.72

8.38

3.88

3.88

7

8.21

8.33

−1.43

1.43

8

9.45

9.11

3.60

3.60

9

9.20

8.97

2.55

2.55

10

8.63

8.43

2.35

2.35

11

8.04

8.15

−1.36

1.36

12

8.80

8.42

4.29

4.29

13

8.38

8.72

−4.04

4.04

14

8.08

8.18

−1.27

1.27

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manjunath Patel, G.C., Chate, G.R., Parappagoudar, M.B. (2020). Modelling and Optimization of Alpha-set Sand Moulding System Using Statistical Design of Experiments and Evolutionary Algorithms. In: Gupta, K., Gupta, M. (eds) Optimization of Manufacturing Processes. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-19638-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19638-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19637-0

  • Online ISBN: 978-3-030-19638-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics