Advertisement

Gaming the Attention with a SSVEP-Based Brain-Computer Interface

  • M. A. Lopez-GordoEmail author
  • Eduardo Perez
  • Jesus Minguillon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)

Abstract

Steady-State Visually Evoked Potentials (SSVEPs) have been widely used in neuroscience for the characterization of dynamic processes from the retina to the visual cortex. In Neuro-engineering, SSVEP-based Brain-computer Interfaces (SSVEP-BCIs) have been used in variety of applications (e. g., communication, entertainment, etc.) for the detection of attention to visual stimuli. In this work, we propose a hands-free videogame in which the player joystick is a SSVEP-BCI. In the videogame, hostile avatars fire weapons against the player who could deflect them if enough attention is exerted. Attention is detected based on the analysis of SSVEP and Alphaband powers. For this purpose, weapons are mobile checkerboards that flicker at a constant frequency. We presented this videogame as a demo in a technologic event for students of engineering who freely tried it. The main findings were: (i) the attention detection algorithm based on SSVEPs is robust enough to be performed in few seconds even with mobile visual stimuli and in a non-isolated room; (ii) the videogame is capable to dose and quantify the amount of cognitive attention that a player exerts on mobile stimuli by controlling their time and position. The results suggest that this videogame could be used as a serious game to play/train the attentional and visual tracking capabilities with direct application in Special Needs Education or in attention disorders.

Keywords

Attention SSVEP Gamification EEG Brain-computer Interface 

Notes

Acknowledgments

This research was funded by the Ministry of Economy and Competitiveness (Spain) grant number [TIN2015-67020P], the Junta of Andalucia (Spain) grant number [P11-TIC-7983], the Spanish National Youth Guarantee Implementation Plan, the Association Nicolo for the R+D in Neurotechnologies for the disability. The authors would like to thank all the volunteers who participated in the study, participants of the University of Granada Lan Party (ULP) 2018 and the I Workshop of Telecommunication Engineering at the ETSIT of the University of Granada.

References

  1. 1.
    Regan, D.: A high frequency mechanism which underlies visual evoked potentials. Electro-encephalogr. Clin. Neurophysiol. 25, 231–237 (1968)CrossRefGoogle Scholar
  2. 2.
    Minguillon, J., Lopez-Gordo, M.A., Pelayo, F.: Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed. Sig. Process. Control 31, 407–418 (2017)CrossRefGoogle Scholar
  3. 3.
    Kelly, S.P., Lalor, E.C., Finucane, C., McDarby, G., Reilly, R.B.: Visual spatial atten-tion control in an independent brain-computer interface. IEEE Trans. Biomed. Eng. 52, 1588–1596 (2005)CrossRefGoogle Scholar
  4. 4.
    Shibata, K., Yamane, K., Otuka, K., Iwata, M.: Abnormal visual processing in migraine with aura: a study of steady-state visual evoked potentials. J. Neurol. Sci. 271, 119–126 (2008)CrossRefGoogle Scholar
  5. 5.
    Sheppard, E., et al.: Children with a history of a typical febrile seizures show abnormal steady state visual evoked potential brain responses. Epilepsy Behav. 27, 90–94 (2013)CrossRefGoogle Scholar
  6. 6.
    Grgiĉ, R.G., Calore, E., de’Sperati, C.: Covert enaction at work: recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs). Cortex 74, 31–52 (2016)CrossRefGoogle Scholar
  7. 7.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Braincomputer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefGoogle Scholar
  8. 8.
    Russo, F.D., Teder-Sälejärvi, W.A., Hillyard, S.A.: Steady-state VEP and attentional visual processing. In: The Cognitive Electrophysiology of Mind and Brain, pp. 259–274. Elsevier (2003).  https://doi.org/10.1016/B978-012775421-5/50013-3CrossRefGoogle Scholar
  9. 9.
    Walter, S., Quigley, C., Andersen, S.K., Mueller, M.M.: Effects of overt and covert attention on the steady-state visual evoked potential. Neurosci. Lett. 519, 37–41 (2012)CrossRefGoogle Scholar
  10. 10.
    Yin, E., Zhou, Z., Jiang, J., Yu, Y., Hu, D.: A dynamically optimized SSVEP Brain-Computer Interface (BCI) speller. IEEE Trans. Biomed. Eng. 62, 1447–1456 (2015)CrossRefGoogle Scholar
  11. 11.
    Lim, J.-H., Lee, J.-H., Hwang, H.-J., Kim, D.H., Im, C.-H.: Development of a hybrid mental spelling system combining SSVEP-based braincomputer interface and webcam-based eye tracking. Biomed. Sig. Process. Control 21, 99–104 (2015)CrossRefGoogle Scholar
  12. 12.
    Brennan, C., et al.: Accessing tele-services using a hybrid BCI approach. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence. LNCS, vol. 9094, pp. 110–123. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19258-1_10CrossRefGoogle Scholar
  13. 13.
    Wang, Y.-T., Wang, Y., Jung, T.-P.: A cell-phone-based braincomputer interface for communication in daily life. J. Neural Eng. 8, 025018 (2011)CrossRefGoogle Scholar
  14. 14.
    Gürkök, H., Nijholt, A., Poel, M., Obbink, M.: Evaluating a multiplayer braincomputer interface game: challenge versus co-experience. Entertain. Comput. 4, 195–203 (2013)CrossRefGoogle Scholar
  15. 15.
    Finke, A., Lenhardt, A., Ritter, H.: The MindGame: a P300-based braincomputer interface game. Neural Netw. 22, 1329–1333 (2009)CrossRefGoogle Scholar
  16. 16.
    Krepki, R., Blankertz, B., Curio, G., Müller, K.-R.: The Berlin Brain-Computer Interface (BBCI) towards a new communication channel for online control in gaming applications. Multimed. Tools Appl. 33, 73–90 (2007)CrossRefGoogle Scholar
  17. 17.
    Pires, G., Torres, M., Casaleiro, N., Nunes, U., Castelo-Branco, M.: Playing Tetris with non-invasive BCI, pp. 1–6. IEEE (2011).  https://doi.org/10.1109/SeGAH.2011.6165454
  18. 18.
    Lopez-Gordo, M.A., Prieto, A., Pelayo, F., Morillas, C.: Customized stimulation enhances performance of independent binary SSVEP-BCIs. Clin. Neurophysiol. 122, 128–133 (2011)CrossRefGoogle Scholar
  19. 19.
    Lopez, M.A., Pelayo, F., Madrid, E., Prieto, A.: Statistical characterization of steady-state visual evoked potentials and their use in braincomputer interfaces. Neural Process. Lett. 29, 179–187 (2009)CrossRefGoogle Scholar
  20. 20.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999)CrossRefGoogle Scholar
  21. 21.
    BCI Lab—Universidad de Granada. Available atGoogle Scholar
  22. 22.
    Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 52(Suppl. 3), 3–6 (1999). The International Federation of Clinical NeurophysiologyGoogle Scholar
  23. 23.
    Lopez, M.A., Pomares, H., Damas, M., Prieto, A., de la Plaza Hernandez, E.M.: Use of Kohonen maps as feature selector for selective attention brain-computer interfaces. In: Mira, J., Álvarez, J.R. (eds.) Bio-inspired Modeling of Cognitive Tasks. LNCS, vol. 4527, pp. 407–415. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73053-8_41CrossRefGoogle Scholar
  24. 24.
    Liu, N.-H., Chiang, C.-Y., Chu, H.-C.: Recognizing the degree of human attention Using EEG signals from mobile sensors. Sensors 13, 10273–10286 (2013)CrossRefGoogle Scholar
  25. 25.
    Wilson, E.B.: Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209 (1927)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. A. Lopez-Gordo
    • 1
    Email author
  • Eduardo Perez
    • 2
  • Jesus Minguillon
    • 3
  1. 1.Department of Signal Theory, Telematics and CommunicationsUniversity of GranadaGranadaSpain
  2. 2.Tyndall National Institute, University College Cork, Wireless Sensors Networks GroupCorkIreland
  3. 3.Department of Information and Communication TechnologiesPompeu Fabra UniversityBarcelonaSpain

Personalised recommendations