Multivariate Pattern Analysis of Electroencephalography Data in a Demand-Selection Task

  • David López-García
  • Alberto Sobrado
  • J. M. González-Peñalver
  • Juan Manuel Górriz
  • María RuzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


Cognitive effort is costly and partly aversive, and thus humans usually avoid it if given the chance. In Demand-Selection Tasks (DST), participants tend to choose the easy option over the hard one. The neural underpinnings of this effect, however, are not well understood. The current study is an initial approximation to adapt a DST to a format that allows measuring concurrent high-density electroencephalography. We used multivariate pattern analysis (MVPA) to decode conflict-related neural processes associated with congruent or incongruent events in a time-frequency resolved way and determined how different frequency bands contribute to the overall decoding accuracy. The decoding analysis involved the use of Support Vector Machines, a supervised learning algorithm that provides a theoretically elegant, computationally efficient, and very effective solution for many practical pattern recognition problems. Preliminary results show significant differences in activation patterns for congruent and incongruent trials, yielding 80% of decoding accuracy 400 ms after the stimulus onset. The results of frequency bands contribution analysis suggest that context-dependent proportion of congruency effect may rely on neural processes operating in Delta and Theta-band frequencies.


Multivariate pattern analysis Electroencephalography Classification Support Vector Machine Demand-Selection Task 



This research was supported by the Spanish Ministry of Economy and Business under the TEC2015-64718-R and PSI2016-78236-P projects. The first author of this work is supported by a grant from the Spanish Ministry of Economy and Business (BES-2017-079769).


  1. 1.
    Kool, W., McGuire, J.T., Rosen, Z.B., Botvinick, M.M.: Decision making and the avoidance of cognitive demand. J. Exp. Psychol.: Gen. 139(4), 665 (2010)CrossRefGoogle Scholar
  2. 2.
    Ramírez, J., et al.: Computer-aided diagnosis of Alzheimer’s type dementia combining support vector machines and discriminant set of features. Inf. Sci. 237, 59–72 (2013)CrossRefGoogle Scholar
  3. 3.
    Chaves, R., et al.: SVM-based computer-aided diagnosis of the Alzheimer’s disease using t-test nmse feature selection with feature correlation weighting. Neurosci. Lett. 461(3), 293–297 (2009)CrossRefGoogle Scholar
  4. 4.
    Salas-Gonzalez, D., et al.: Computer-aided diagnosis of Alzheimer’s disease using support vector machines and classification trees. Phys. Med. Biol. 55(10), 2807 (2010)CrossRefGoogle Scholar
  5. 5.
    Álvarez, I., et al.: Alzheimer’s diagnosis using eigenbrains and support vector machines. Electron. Lett. 45(7), 342–343 (2009)CrossRefGoogle Scholar
  6. 6.
    Koley, B., Dey, D.: An ensemble system for automatic sleep stage classification using single channel EEG signal. Comput. Biol. Med. 42(12), 1186–1195 (2012)CrossRefGoogle Scholar
  7. 7.
    Aboalayon, K.A.I., Ocbagabir, H.T., Faezipour, M.: Efficient sleep stage classification based on EEG signals. In: IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, pp. 1–6. IEEE (2014)Google Scholar
  8. 8.
    López-García, D., Ruz, M., de Inestrosa, J.R.P., Sáez, J.M.G.: Automatic detection of sleep disorders: multi-class automatic classification algorithms based on support vector machines. In: International Conference on Time Series and Forecasting (ITISE 2018), vol. 3, pp. 1270–1280 (2018)Google Scholar
  9. 9.
    Cauchoix, M., Barragan-Jason, G., Serre, T., Barbeau, E.J.: The neural dynamics of face detection in the wild revealed by MVPA. J. Neurosci. 34(3), 846–854 (2014)CrossRefGoogle Scholar
  10. 10.
    Kerrén, C., Linde-Domingo, J., Hanslmayr, S., Wimber, M.: An optimal oscillatory phase for pattern reactivation during memory retrieval. Curr. Biol. 28(21), 3383–3392 (2018)CrossRefGoogle Scholar
  11. 11.
    Hebart, M.N., Bankson, B.B., Harel, A., Baker, C.I., Cichy, R.M.: The representational dynamics of task and object processing in humans. Elife 7, e32816 (2018)CrossRefGoogle Scholar
  12. 12.
    Correia, J.M., Jansma, B., Hausfeld, L., Kikkert, S., Bonte, M.: EEG decoding of spoken words in bilingual listeners: from words to language invariant semantic-conceptual representations. Front. Psychol. 6, 71 (2015)CrossRefGoogle Scholar
  13. 13.
    Cohen, M.X., Donner, T.H.: Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Am. J. Physiol.-Heart Circ. Physiol. 110, 2752–2763 (2013)Google Scholar
  14. 14.
    Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C., et al.: What’s new in psychtoolbox-3. Perception 36(14), 1 (2007)Google Scholar
  15. 15.
    Logix4U, Gibbons, P.: Inpout32 is an open source windows DLL and driver to give direct access to hardware portsGoogle Scholar
  16. 16.
    Schouppe, N., Demanet, J., Boehler, C.N., Ridderinkhof, K.R., Notebaert, W.: The role of the striatum in effort-based decision-making in the absence of reward. J. Neurosci. 34(6), 2148–2154 (2014)CrossRefGoogle Scholar
  17. 17.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  18. 18.
    Isik, L., Meyers, E.M., Leibo, J.Z., Poggio, T.A.: The dynamics of invariant object recognition in the human visual system. Am. J. Physiol.-Heart Circ. Physiol. 111, 91–102 (2013)Google Scholar
  19. 19.
    Grootswagers, T., Wardle, S.G., Carlson, T.A.: Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data. J. Cogn. Neurosci. 29(4), 677–697 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David López-García
    • 1
  • Alberto Sobrado
    • 1
  • J. M. González-Peñalver
    • 1
  • Juan Manuel Górriz
    • 2
  • María Ruz
    • 1
    Email author
  1. 1.Mind, Brain and Behavior Research Center (CIMCYC)University of GranadaGranadaSpain
  2. 2.Signal Theory, Telematics and Communications Department (TSTC)University of GranadaGranadaSpain

Personalised recommendations