Skip to main content

How to Improve Spatial and Numerical Cognition with a Game-Based and Technology-Enhanced Learning Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11486))

Abstract

In this paper, the connection between spatial and numerical cognition is highlighted and some applications to improve them are discussed. Indeed, in children, it is possible to promote numerical cognition, which is the base of mathematical cognition and academic achievement in later years, by strengthening their natural endowment to deal both with numerical stimuli and spatial stimuli.

Together with a brief review about spatial and numerical cognition, two tools that are meant to improve them with a Game-based and Technology enhanced approach are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashcraft, M.H., Kirk, E.P.: The relationships among working memory, math anxiety, and performance. J. Exp. Psychol.: Gen. 130(2), 224 (2001)

    Article  Google Scholar 

  2. Berkowitz, T., et al.: Math at home adds up to achievement in school. Science 350(6257), 196–198 (2015)

    Article  Google Scholar 

  3. Butterworth, B.: What Counts: How Every Brain is Hardwired for Math (p. pp). The Free Press (1999)

    Google Scholar 

  4. Cerrato, A., Ponticorvo, M.: Enhancing neuropsychological testing with gamification and tangible interfaces: the baking tray task. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10338, pp. 147–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59773-7_16

    Chapter  Google Scholar 

  5. Cerrato, A., Ponticorvo, M., Bartolomeo, P., Miglino, O.: Btt-Scan: Uno Strumento Per La Valutazione Della Negligenza Spaziale Unilaterale. SISTEMI INTELLIGENTI 2019(1), Il Mulino (2019, in press)

    Google Scholar 

  6. Dehaene, S.: The Number Sense: How the Mind Creates Mathematics. OUP USA (2011)

    Google Scholar 

  7. Dehaene, S.: Varieties of numerical abilities. Cognition 44(1–2), 1–42 (1992)

    Google Scholar 

  8. Dehaene, S.: The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends Cogn. Sci. 7(4), 145–147 (2003)

    Article  MathSciNet  Google Scholar 

  9. Dehaene, S., Bossini, S., Giraux, P.: The mental representation of parity and number magnitude. J. Exp. Psychol.: Gen. 122(3), 371 (1993)

    Article  Google Scholar 

  10. Di Fuccio, R., Ponticorvo, M., Ferrara, F., Miglino, O.: Digital and multisensory storytelling: narration with smell, taste and touch. In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 509–512. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45153-4_51

    Chapter  Google Scholar 

  11. Doricchi, F., et al.: Spatial orienting biases in the decimal numeral system. Curr. Biol. 19(8), 682–687 (2009)

    Article  Google Scholar 

  12. Ferrara, F., Ponticorvo, M., Di Ferdinando, A., Miglino, O.: Tangible interfaces for cognitive assessment and training in children: LogicART. In: Uskov, V.L., Howlett, R.J., Jain, L.C. (eds.) Smart Education and e-Learning 2016. SIST, vol. 59, pp. 329–338. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39690-3_29

    Chapter  Google Scholar 

  13. Fischer, M.H., Shaki, S.: Spatial associations in numerical cognition-from single digits to arithmetic. Q. J. Exp. Psychol. 67(8), 1461–1483 (2014)

    Article  Google Scholar 

  14. Gilmore, C., Attridge, N., Inglis, M.: Measuring the approximate number system. Q. J. Exp. Psychol. 64(11), 2099–2109 (2011)

    Article  Google Scholar 

  15. Girelli, L., Lucangeli, D., Butterworth, B.: The development of automaticity in accessing number magnitude. J. Exp. Child Psychol. 76(2), 104–122 (2000)

    Article  Google Scholar 

  16. Halberda, J., Feigenson, L.: Developmental change in the acuity of the “number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev. Psychol. 44(5), 1457 (2008)

    Article  Google Scholar 

  17. Hindman, A.H., Skibbe, L.E., Miller, A., Zimmerman, M.: Ecological contexts and early learning: contributions of child, family, and classroom factors during Head Start, to literacy and mathematics growth through first grade. Early Child. Res. Q. 25(2), 235–250 (2010)

    Article  Google Scholar 

  18. Huttenlocher, J., Newcombe, N., Sandberg, E.H.: The coding of spatial location in young children. Cogn. Psychol. 27(2), 115–147 (1994)

    Article  Google Scholar 

  19. Jirout, J.J., Newcombe, N.S.: Building blocks for developing spatial skills: evidence from a large, representative US sample. Psychol. Sci. 26(3), 302–310 (2015)

    Article  Google Scholar 

  20. Kaufman, E.L., Lord, M.W., Reese, T.W., Volkmann, J.: The discrimination of visual number. Am. J. Psychol. 62(4), 498–525 (1949)

    Article  Google Scholar 

  21. Lonigan, C.J.: Development, assessment, and promotion of preliteracy skills. Early Educ. Dev. 17(1), 91–114 (2006)

    Article  Google Scholar 

  22. Marocco, D., Pacella, D., Dell’Aquila, E., Di Ferdinando, A.: Grounding serious game design on scientific findings: the case of ENACT on soft skills training and assessment. In: Conole, G., Klobučar, T., Rensing, C., Konert, J., Lavoué, É. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 441–446. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24258-3_37

    Chapter  Google Scholar 

  23. Miglino, O., Ponticorvo, M., Bartolomeo, P.: Place cognition and active perception: a study with evolved robots. Connect. Sci. 21(1), 3–14 (2009)

    Article  Google Scholar 

  24. Miglino, O., Ponticorvo, M.: Place cognition as an example of situated cognition: a study with evolved agents. Cogn. Process. 10(2), 250–252 (2009)

    Article  Google Scholar 

  25. Möhring, W., Ramsook, K.A., Hirsh-Pasek, K., Golinkoff, R.M., Newcombe, N.S.: Where music meets space: children’s sensitivity to pitch intervals is related to their mental spatial transformation skills. Cognition 151, 1–5 (2016)

    Article  Google Scholar 

  26. Newcombe, N.S.: Thinking spatially in the science classroom. Curr. Opin. Behav. Sci. 10, 1–6 (2016)

    Article  Google Scholar 

  27. Newcombe, N.S.: Picture this: increasing math and science learning by improving spatial thinking. Am. Educ. 34(2), 29 (2010)

    Google Scholar 

  28. Newcombe, N.S., Huttenlocher, J.: Making Space: The Development of Spatial Representation and Reasoning. MIT Press, Cambridge (2003)

    Google Scholar 

  29. Pacella, D., Di Ferdinando, A., Dell Aquila, E., Marocco, D.: Online assessment of negotiation skills through 3D role play simulation (2015)

    Google Scholar 

  30. Ponticorvo, M., Rotondaro, F., Doricchi, F., Miglino, O.: A neural model of number interval position effect (NIPE) in children. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 9–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18914-7_2

    Chapter  Google Scholar 

  31. Ponticorvo, M., Miglino, O.: Encoding geometric and non-geometric information: a study with evolved agents. Anim. Cogn. 13(1), 157 (2010)

    Article  Google Scholar 

  32. Ponticorvo, M., Gigliotta, O., Miglino, O.: Simulative models to understand numerical cognition. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 75–84. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59740-9_8

    Chapter  Google Scholar 

  33. Ponticorvo, M., Di Ferdinando, A., Marocco, D., Miglino, O.: Bio-inspired computational algorithms in educational and serious games: some examples. In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 636–639. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45153-4_80

    Chapter  Google Scholar 

  34. Ponticorvo, M., Di Fuccio, R., Ferrara, F., Rega, A., Miglino, O.: Multisensory educational materials: five senses to learn. In: Di Mascio, T., et al. (eds.) MIS4TEL 2018. AISC, vol. 804, pp. 45–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98872-6_6

    Chapter  Google Scholar 

  35. Ponticorvo, M., Rega, A., Miglino, O.: Toward tutoring systems inspired by applied behavioral analysis. In: Nkambou, R., Azevedo, R., Vassileva, J. (eds.) ITS 2018. LNCS, vol. 10858, pp. 160–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91464-0_16

    Chapter  Google Scholar 

  36. Ponticorvo, M., Rega, A., Di Ferdinando, A., Marocco, D., Miglino, O.: Approaches to embed bio-inspired computational algorithms in educational and serious games. In: CEUR Workshop Proceedings (2018)

    Google Scholar 

  37. Ponticorvo, M., Di Fuccio, R., Di Ferdinando, A., Miglino, O.: An agent-based modelling approach to build up educational digital games for kindergarten and primary schools. Expert Syst. 34(4), e12196 (2017)

    Article  Google Scholar 

  38. Romano, E., Babchishin, L., Pagani, L.S., Kohen, D.: School readiness and later achievement: replication and extension using a nationwide Canadian survey. Dev. Psychol. 46(5), 995 (2010)

    Article  Google Scholar 

  39. Rotondaro, F., et al.: The Number Interval Position Effect (NIPE) in the mental bisection of numerical intervals might reflect the influence of the decimal-number system on the Gaussian representations of numerosities: a combined developmental and computational-modeling study. Cortex (2018)

    Google Scholar 

  40. Shaul, S., Schwartz, M.: The role of the executive functions in school readiness among preschool-age children. Read. Writ. 27(4), 749–768 (2014)

    Article  Google Scholar 

  41. Sorby, S., Casey, B., Veurink, N., Dulaney, A.: The role of spatial training in improving spatial and calculus performance in engineering students. Learn. Individ. Differ. 26, 20–29 (2013)

    Article  Google Scholar 

  42. Snow, K.L.: Measuring school readiness: conceptual and practical considerations. Early Educ. Dev. 17(1), 7–41 (2006)

    Article  MathSciNet  Google Scholar 

  43. Spelke, E.S.: Sex differences in intrinsic aptitude for mathematics and science?: A critical review. Am. Psychol. 60(9), 950 (2005)

    Article  Google Scholar 

  44. Spelke, E.S., Kinzler, K.D.: Core knowledge. Dev. Sci. 10(1), 89–96 (2007)

    Article  Google Scholar 

  45. Starr, A., Libertus, M.E., Brannon, E.M.: Number sense in infancy predicts mathematical abilities in childhood. Proc. Natl. Acad. Sci. 110(45), 18116–18120 (2013)

    Article  Google Scholar 

  46. Stevenson, H.W., Chen, C., Lee, S.Y.: Mathematics achievement of Chinese, Japanese, and American children: ten years later. Science, 53–58 (1993)

    Google Scholar 

  47. Verdine, B.N., Golinkoff, R.M., Hirsh-Pasek, K., Newcombe, N.S.: I. Spatial skills, their development, and their links to mathematics. Monogr. Soc. Res. Child Dev. 82(1), 7–30 (2017)

    Article  Google Scholar 

  48. Verdine, B.N., Golinkoff, R.M., Hirsh-Pasek, K., Newcombe, N.S., Filipowicz, A.T., Chang, A.: Deconstructing building blocks: preschoolers’ spatial assembly performance relates to early mathematical skills. Child Dev. 85(3), 1062–1076 (2014)

    Article  Google Scholar 

  49. Wood, G., Willmes, K., Nuerk, H.-C., Fischer, M.: On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychol. Sci. Q. 50(4), 489–525 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ponticorvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponticorvo, M., Schembri, M., Miglino, O. (2019). How to Improve Spatial and Numerical Cognition with a Game-Based and Technology-Enhanced Learning Approach. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics