How to Improve Spatial and Numerical Cognition with a Game-Based and Technology-Enhanced Learning Approach

  • Michela PonticorvoEmail author
  • Massimiliano Schembri
  • Orazio Miglino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


In this paper, the connection between spatial and numerical cognition is highlighted and some applications to improve them are discussed. Indeed, in children, it is possible to promote numerical cognition, which is the base of mathematical cognition and academic achievement in later years, by strengthening their natural endowment to deal both with numerical stimuli and spatial stimuli.

Together with a brief review about spatial and numerical cognition, two tools that are meant to improve them with a Game-based and Technology enhanced approach are reported.


Numerical cognition Spatial cognition Game-based learning Technology-enhanced learning Cognitive development 


  1. 1.
    Ashcraft, M.H., Kirk, E.P.: The relationships among working memory, math anxiety, and performance. J. Exp. Psychol.: Gen. 130(2), 224 (2001)Google Scholar
  2. 2.
    Berkowitz, T., et al.: Math at home adds up to achievement in school. Science 350(6257), 196–198 (2015)Google Scholar
  3. 3.
    Butterworth, B.: What Counts: How Every Brain is Hardwired for Math (p. pp). The Free Press (1999)Google Scholar
  4. 4.
    Cerrato, A., Ponticorvo, M.: Enhancing neuropsychological testing with gamification and tangible interfaces: the baking tray task. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10338, pp. 147–156. Springer, Cham (2017). Scholar
  5. 5.
    Cerrato, A., Ponticorvo, M., Bartolomeo, P., Miglino, O.: Btt-Scan: Uno Strumento Per La Valutazione Della Negligenza Spaziale Unilaterale. SISTEMI INTELLIGENTI 2019(1), Il Mulino (2019, in press)Google Scholar
  6. 6.
    Dehaene, S.: The Number Sense: How the Mind Creates Mathematics. OUP USA (2011)Google Scholar
  7. 7.
    Dehaene, S.: Varieties of numerical abilities. Cognition 44(1–2), 1–42 (1992)Google Scholar
  8. 8.
    Dehaene, S.: The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends Cogn. Sci. 7(4), 145–147 (2003)MathSciNetGoogle Scholar
  9. 9.
    Dehaene, S., Bossini, S., Giraux, P.: The mental representation of parity and number magnitude. J. Exp. Psychol.: Gen. 122(3), 371 (1993)Google Scholar
  10. 10.
    Di Fuccio, R., Ponticorvo, M., Ferrara, F., Miglino, O.: Digital and multisensory storytelling: narration with smell, taste and touch. In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 509–512. Springer, Cham (2016). Scholar
  11. 11.
    Doricchi, F., et al.: Spatial orienting biases in the decimal numeral system. Curr. Biol. 19(8), 682–687 (2009)Google Scholar
  12. 12.
    Ferrara, F., Ponticorvo, M., Di Ferdinando, A., Miglino, O.: Tangible interfaces for cognitive assessment and training in children: LogicART. In: Uskov, V.L., Howlett, R.J., Jain, L.C. (eds.) Smart Education and e-Learning 2016. SIST, vol. 59, pp. 329–338. Springer, Cham (2016). Scholar
  13. 13.
    Fischer, M.H., Shaki, S.: Spatial associations in numerical cognition-from single digits to arithmetic. Q. J. Exp. Psychol. 67(8), 1461–1483 (2014)Google Scholar
  14. 14.
    Gilmore, C., Attridge, N., Inglis, M.: Measuring the approximate number system. Q. J. Exp. Psychol. 64(11), 2099–2109 (2011)Google Scholar
  15. 15.
    Girelli, L., Lucangeli, D., Butterworth, B.: The development of automaticity in accessing number magnitude. J. Exp. Child Psychol. 76(2), 104–122 (2000)Google Scholar
  16. 16.
    Halberda, J., Feigenson, L.: Developmental change in the acuity of the “number sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev. Psychol. 44(5), 1457 (2008)Google Scholar
  17. 17.
    Hindman, A.H., Skibbe, L.E., Miller, A., Zimmerman, M.: Ecological contexts and early learning: contributions of child, family, and classroom factors during Head Start, to literacy and mathematics growth through first grade. Early Child. Res. Q. 25(2), 235–250 (2010)Google Scholar
  18. 18.
    Huttenlocher, J., Newcombe, N., Sandberg, E.H.: The coding of spatial location in young children. Cogn. Psychol. 27(2), 115–147 (1994)Google Scholar
  19. 19.
    Jirout, J.J., Newcombe, N.S.: Building blocks for developing spatial skills: evidence from a large, representative US sample. Psychol. Sci. 26(3), 302–310 (2015)Google Scholar
  20. 20.
    Kaufman, E.L., Lord, M.W., Reese, T.W., Volkmann, J.: The discrimination of visual number. Am. J. Psychol. 62(4), 498–525 (1949)Google Scholar
  21. 21.
    Lonigan, C.J.: Development, assessment, and promotion of preliteracy skills. Early Educ. Dev. 17(1), 91–114 (2006)Google Scholar
  22. 22.
    Marocco, D., Pacella, D., Dell’Aquila, E., Di Ferdinando, A.: Grounding serious game design on scientific findings: the case of ENACT on soft skills training and assessment. In: Conole, G., Klobučar, T., Rensing, C., Konert, J., Lavoué, É. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 441–446. Springer, Cham (2015). Scholar
  23. 23.
    Miglino, O., Ponticorvo, M., Bartolomeo, P.: Place cognition and active perception: a study with evolved robots. Connect. Sci. 21(1), 3–14 (2009)Google Scholar
  24. 24.
    Miglino, O., Ponticorvo, M.: Place cognition as an example of situated cognition: a study with evolved agents. Cogn. Process. 10(2), 250–252 (2009)Google Scholar
  25. 25.
    Möhring, W., Ramsook, K.A., Hirsh-Pasek, K., Golinkoff, R.M., Newcombe, N.S.: Where music meets space: children’s sensitivity to pitch intervals is related to their mental spatial transformation skills. Cognition 151, 1–5 (2016)Google Scholar
  26. 26.
    Newcombe, N.S.: Thinking spatially in the science classroom. Curr. Opin. Behav. Sci. 10, 1–6 (2016)Google Scholar
  27. 27.
    Newcombe, N.S.: Picture this: increasing math and science learning by improving spatial thinking. Am. Educ. 34(2), 29 (2010)Google Scholar
  28. 28.
    Newcombe, N.S., Huttenlocher, J.: Making Space: The Development of Spatial Representation and Reasoning. MIT Press, Cambridge (2003)Google Scholar
  29. 29.
    Pacella, D., Di Ferdinando, A., Dell Aquila, E., Marocco, D.: Online assessment of negotiation skills through 3D role play simulation (2015)Google Scholar
  30. 30.
    Ponticorvo, M., Rotondaro, F., Doricchi, F., Miglino, O.: A neural model of number interval position effect (NIPE) in children. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 9–18. Springer, Cham (2015). Scholar
  31. 31.
    Ponticorvo, M., Miglino, O.: Encoding geometric and non-geometric information: a study with evolved agents. Anim. Cogn. 13(1), 157 (2010)Google Scholar
  32. 32.
    Ponticorvo, M., Gigliotta, O., Miglino, O.: Simulative models to understand numerical cognition. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 75–84. Springer, Cham (2017). Scholar
  33. 33.
    Ponticorvo, M., Di Ferdinando, A., Marocco, D., Miglino, O.: Bio-inspired computational algorithms in educational and serious games: some examples. In: Verbert, K., Sharples, M., Klobučar, T. (eds.) EC-TEL 2016. LNCS, vol. 9891, pp. 636–639. Springer, Cham (2016). Scholar
  34. 34.
    Ponticorvo, M., Di Fuccio, R., Ferrara, F., Rega, A., Miglino, O.: Multisensory educational materials: five senses to learn. In: Di Mascio, T., et al. (eds.) MIS4TEL 2018. AISC, vol. 804, pp. 45–52. Springer, Cham (2019). Scholar
  35. 35.
    Ponticorvo, M., Rega, A., Miglino, O.: Toward tutoring systems inspired by applied behavioral analysis. In: Nkambou, R., Azevedo, R., Vassileva, J. (eds.) ITS 2018. LNCS, vol. 10858, pp. 160–169. Springer, Cham (2018). Scholar
  36. 36.
    Ponticorvo, M., Rega, A., Di Ferdinando, A., Marocco, D., Miglino, O.: Approaches to embed bio-inspired computational algorithms in educational and serious games. In: CEUR Workshop Proceedings (2018)Google Scholar
  37. 37.
    Ponticorvo, M., Di Fuccio, R., Di Ferdinando, A., Miglino, O.: An agent-based modelling approach to build up educational digital games for kindergarten and primary schools. Expert Syst. 34(4), e12196 (2017)Google Scholar
  38. 38.
    Romano, E., Babchishin, L., Pagani, L.S., Kohen, D.: School readiness and later achievement: replication and extension using a nationwide Canadian survey. Dev. Psychol. 46(5), 995 (2010)Google Scholar
  39. 39.
    Rotondaro, F., et al.: The Number Interval Position Effect (NIPE) in the mental bisection of numerical intervals might reflect the influence of the decimal-number system on the Gaussian representations of numerosities: a combined developmental and computational-modeling study. Cortex (2018)Google Scholar
  40. 40.
    Shaul, S., Schwartz, M.: The role of the executive functions in school readiness among preschool-age children. Read. Writ. 27(4), 749–768 (2014)Google Scholar
  41. 41.
    Sorby, S., Casey, B., Veurink, N., Dulaney, A.: The role of spatial training in improving spatial and calculus performance in engineering students. Learn. Individ. Differ. 26, 20–29 (2013)Google Scholar
  42. 42.
    Snow, K.L.: Measuring school readiness: conceptual and practical considerations. Early Educ. Dev. 17(1), 7–41 (2006)MathSciNetGoogle Scholar
  43. 43.
    Spelke, E.S.: Sex differences in intrinsic aptitude for mathematics and science?: A critical review. Am. Psychol. 60(9), 950 (2005)Google Scholar
  44. 44.
    Spelke, E.S., Kinzler, K.D.: Core knowledge. Dev. Sci. 10(1), 89–96 (2007)Google Scholar
  45. 45.
    Starr, A., Libertus, M.E., Brannon, E.M.: Number sense in infancy predicts mathematical abilities in childhood. Proc. Natl. Acad. Sci. 110(45), 18116–18120 (2013)Google Scholar
  46. 46.
    Stevenson, H.W., Chen, C., Lee, S.Y.: Mathematics achievement of Chinese, Japanese, and American children: ten years later. Science, 53–58 (1993)Google Scholar
  47. 47.
    Verdine, B.N., Golinkoff, R.M., Hirsh-Pasek, K., Newcombe, N.S.: I. Spatial skills, their development, and their links to mathematics. Monogr. Soc. Res. Child Dev. 82(1), 7–30 (2017)Google Scholar
  48. 48.
    Verdine, B.N., Golinkoff, R.M., Hirsh-Pasek, K., Newcombe, N.S., Filipowicz, A.T., Chang, A.: Deconstructing building blocks: preschoolers’ spatial assembly performance relates to early mathematical skills. Child Dev. 85(3), 1062–1076 (2014)Google Scholar
  49. 49.
    Wood, G., Willmes, K., Nuerk, H.-C., Fischer, M.: On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychol. Sci. Q. 50(4), 489–525 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michela Ponticorvo
    • 1
    Email author
  • Massimiliano Schembri
    • 2
  • Orazio Miglino
    • 1
  1. 1.Department of Humanistic StudiesUniversity of Naples “Federico II”NaplesItaly
  2. 2.Federica Web LearningNaplesItaly

Personalised recommendations