Advertisement

Periodogram Connectivity of EEG Signals for the Detection of Dyslexia

  • F. J. Martinez-MurciaEmail author
  • A. Ortiz
  • R. Morales-Ortega
  • P. J. López
  • J. L. Luque
  • D. Castillo-Barnes
  • F. Segovia
  • I. A. Illan
  • J. Ortega
  • J. Ramirez
  • J. M. Gorriz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)

Abstract

Electroencephalography (EEG) signals provide an important source of information of brain activity at different areas. This information can be used to diagnose brain disorders according to different activation patterns found in controls and patients. This acquisition technology can be also used to explore the neural basis of less evident learning disabilities such as Developmental Dyslexia (DD). DD is a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling, whose prevalent is estimated between 5% and 12% of the population. In this paper we propose a method to extract discriminative features from EEG signals based on the relationship among the spectral density at each channel. This relationship is computed by means of different correlation measures, inferring connectivity-like markers that are eventually selected and classified by a linear support vector machine. The experiments performed shown AUC values up to 0.7, demonstrating the applicability of the proposed approach for objective DD diagnosis.

Keywords

Periodogram EEG Connectivity Principal Component Analysis Dyslexia 

Notes

Acknowledgements

This work was partly supported by the MINECO/ FEDER under TEC2015-64718-R and PSI2015-65848-R projects and the Juan de la Cierva - Formación postdoctoral programme.

References

  1. 1.
    Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. (2017).  https://doi.org/10.1016/j.compbiomed.2017.09.017CrossRefGoogle Scholar
  2. 2.
    Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018)CrossRefGoogle Scholar
  3. 3.
    Flanagan, S., Goswami, U.: The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. J. Acoust. Soc. Am. 143, 1366–1375 (2018).  https://doi.org/10.1121/1.5026239CrossRefGoogle Scholar
  4. 4.
    De la Hoz, E., de la Hoz, E., Ortiz, A., Ortega, J., Martínez-Álvarez, A.: Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps. Knowl.-Based Syst. 71, 322–338 (2014)CrossRefGoogle Scholar
  5. 5.
    Illán, I., et al.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf. Sci. 181(4), 903–916 (2011)CrossRefGoogle Scholar
  6. 6.
    Lafuente, V., Gorriz, J.M., Ramirez, J., Gonzalez, E.: P300 brainwave extraction from EEG signals: an unsupervised approach. Expert Syst. Appl. 74, 1–10 (2017).  https://doi.org/10.1016/j.eswa.2016.12.038CrossRefGoogle Scholar
  7. 7.
    Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004).  https://doi.org/10.1016/s0047-259x(03)00096-4MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Markiewicz, P., Matthews, J., Declerck, J., Herholz, K.: Robustness of multivariate image analysis assessed by resampling techniques and applied to FDG-PET scans of patients with Alzheimer’s disease. Neuroimage 46, 472–485 (2009). http://www.sciencedirect.com/science/article/B6WNP-4VFK7X3-3/2/e7833cb1d62f98e28326352e45981d00CrossRefGoogle Scholar
  9. 9.
    Martínez-Murcia, F., Górriz, J., Ramírez, J., Puntonet, C., Salas-González, D.: Computer aided diagnosis tool for Alzheimer’s disease based on Mann-Whitney-Wilcoxon U-test. Expert Syst. Appl. 39(10), 9676–9685 (2012).  https://doi.org/10.1016/j.eswa.2012.02.153CrossRefGoogle Scholar
  10. 10.
    Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the Alzheimer’s disease progression. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60964-5_36CrossRefGoogle Scholar
  11. 11.
    Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007 (2012)CrossRefGoogle Scholar
  12. 12.
    Sakkalis, V.: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011).  https://doi.org/10.1016/j.compbiomed.2011.06.020CrossRefGoogle Scholar
  13. 13.
    Schoffelen, J.M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30(6), 1857–1865 (2009).  https://doi.org/10.1002/hbm.20745CrossRefGoogle Scholar
  14. 14.
    Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt, J.: Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30136-3_80CrossRefGoogle Scholar
  15. 15.
    Thompson, P.A., Hulme, C., Nash, H.M., Gooch, D., Hayiou-Thomas, E., Snowling, M.J.: Developmental dyslexia: predicting individual risk. J. Child Psychol. Psychiatry 56(9), 976–987 (2015)CrossRefGoogle Scholar
  16. 16.
    Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).  https://doi.org/10.1109/tau.1967.1161901CrossRefGoogle Scholar
  17. 17.
    Zhou, S.M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178(6), 1629–1640 (2008).  https://doi.org/10.1016/j.ins.2007.11.012CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • F. J. Martinez-Murcia
    • 1
    Email author
  • A. Ortiz
    • 1
  • R. Morales-Ortega
    • 4
    • 5
  • P. J. López
    • 2
  • J. L. Luque
    • 2
  • D. Castillo-Barnes
    • 3
  • F. Segovia
    • 3
  • I. A. Illan
    • 3
  • J. Ortega
    • 4
  • J. Ramirez
    • 3
  • J. M. Gorriz
    • 3
  1. 1.Department of Communications EngineeringUniversity of MalagaMálagaSpain
  2. 2.Department of Developmental PsychologyUniversity of MalagaMálagaSpain
  3. 3.Department of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain
  4. 4.Department of Computer ArchitectureUniversity of GranadaGranadaSpain
  5. 5.Department of Computer Science and ElectronicsUniversidad de la Costa CUCBarranquillaColombia

Personalised recommendations