Skip to main content

BIOTHINGS: A Pipeline Creation Tool for PAR-CLIP Sequence Analsys

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11486))

  • 1239 Accesses

Abstract

Bioinformatics pipelines dealing with analysis of sequences of aminoacids are tricky. It is not easy to match the input and outputs of stand-alone applications that sometimes were developed for quite different kinds of sequences. In this paper we propose a tool for the guided and safe composition of pipelines to treat a specific kind of sequences. This tool can easily extend to more general bioinformatics setting. Cross-Linking Immuno Precipitation associated to high-throughput sequencing (CLIP-seq) has been recently developed aiming to uncover the RNA-protein interaction genome-wide. Specifically PhotoActivable-Ribonucleoside-enhanced-CLIP (PAR-CLIP) has been proposed to achieve single-nucleotide resolution. A critical step in the analysis of PAR-CLIP sequences is peak calling. Specific methods propose probabilistic models based on its substitution properties, allowing for a more accurate detection of RNA-protein interaction sites. The pipeline construction tool proposed here can be used for systematic comparison of the effect of the choice of peak calling method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Althammer, S., González-Vallinas, J., Ballaré, C., Beato, M., Eyras, E.: Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics 27(24), 3333–3340 (2011)

    Article  Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014)

    Article  Google Scholar 

  4. Bottini, S., Pratella, D., Grandjean, V., Repetto, E., Trabucchi, M.: Recent computational developments on CLIP-seq data analysis and microRNA targeting implications. Briefings Bioinf. 19(6), 1290–1301 (2017)

    Article  Google Scholar 

  5. Chen, B., Yun, J., Kim, M.S., Mendell, J.T., Xie, Y.: PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol. 15, R18 (2014)

    Article  Google Scholar 

  6. Chen, C., Khaleel, S.S., Huang, H., Cathy, H.W.: Software for pre-processing illumina next-generation sequencing short read sequences. Source Code Biol. Med. 9(1), 8 (2014)

    Article  Google Scholar 

  7. Comoglio, F., Sievers, C., Paro, R.: Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinf. 16, 32 (2015)

    Article  Google Scholar 

  8. Corcoran, D.L., et al.: PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 12, R79 (2011)

    Article  Google Scholar 

  9. Dobin, A., et al.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013)

    Article  Google Scholar 

  10. Echaniz, O., Graña, M.: A comparison of par-clip peak calling approaches on noisy data. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2017–2023, December 2018

    Google Scholar 

  11. Echaniz, O., Graña, M.: BIOTHINGS: a tool to create safe and sound bioinformatics pipelines, February 2019. https://doi.org/10.5281/zenodo.2580383

  12. Erhard, F., Dölken, L., Jaskiewicz, L., Zimmer, R.: PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol. 14, R79 (2013)

    Article  Google Scholar 

  13. Garzia, A., Morozov, P., Sajek, M., Meyer, C., Tuschl, T.: PAR-CLIP for discovering target sites of RNA-binding proteins. In: Lamandé, S.R. (ed.) mRNA Decay. MMB, vol. 1720, pp. 55–75. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7540-2_5

    Chapter  Google Scholar 

  14. Golumbeanu, M., Mohammadi, P., Beerenwinkel, N.: BMix: probabilistic modeling of occurring substitutions in PAR-CLIP data. Bioinformatics 32(7), 976–983 (2016)

    Article  Google Scholar 

  15. Charles, G.E., Bailey, T.L., Noble, W.S.: FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7), 1017–1018 (2011)

    Article  Google Scholar 

  16. Hafner, M., et al.: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1), 129–141 (2010)

    Article  Google Scholar 

  17. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), R25 (2009)

    Article  Google Scholar 

  18. Sievers, C., Schlumpf, T., Sawarkar, R., Comoglio, F., Paro, R.: Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res. 40(20), e160 (2012)

    Article  Google Scholar 

  19. Sims, D., Sudbery, I., Ilott, N.E., Heger, A., Ponting, C.P.: Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121 (2014)

    Article  Google Scholar 

  20. Smith, A.D., et al.: Updates to the RMAP short-read mapping software. Bioinformatics 25(21), 2841–2842 (2009)

    Article  Google Scholar 

  21. Webb, S., Hector, R.D., Kudla, G., Granneman, S.: PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol. 15, R8 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Echaniz, O., Graña, M. (2019). BIOTHINGS: A Pipeline Creation Tool for PAR-CLIP Sequence Analsys. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics