Advertisement

Boosting Object Detection in Cyberphysical Systems

  • José M. BuenaposadaEmail author
  • Luis Baumela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)

Abstract

The construction of Cyberphysical systems requires providing intelligent behavior to physical agents at the smallest scale and, therefore, the need to develop very efficient and resource-aware algorithms. In this paper we present an object detection algorithm that may endow an agent with perceptual object detection capabilities at a small computational cost. To this end we adapt a recent Multi-class Boosting scheme to create an efficient detector with the capability of regressing the object bounding box. In the experiments we prove that the resulting algorithm shows Average Precision (AP) improvements in a multi-view car detection problem.

Keywords

Object detection Multi-class boosting Cyberphysical systems 

References

  1. 1.
    Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  2. 2.
    Diller, E., Metin Sitti, M.: Micro-scale mobile robotics. Found. Trends Robot. 2(3), 143–259 (2013)CrossRefGoogle Scholar
  3. 3.
    Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)CrossRefGoogle Scholar
  4. 4.
    Fernández-Baldera, A., Buenaposada, J.M., Baumela, L.: Multi-class boosting for imbalanced data. In: Paredes, R., Cardoso, J.S., Pardo, X.M. (eds.) IbPRIA 2015. LNCS, vol. 9117, pp. 57–64. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19390-8_7CrossRefGoogle Scholar
  5. 5.
    Fernández-Baldera, A., Buenaposada, J.M., Baumela, L.: BAdaCost: multi-class boosting with costs. Pattern Recogn. 79, 467–479 (2018)CrossRefGoogle Scholar
  6. 6.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  7. 7.
    Juranek, R., Herout, A., Dubska, M., Zemcik, P.: Real-time pose estimation piggybacked on object detection. In: Proceedings of the International Conference Computer Vision, December 2015Google Scholar
  8. 8.
    Liu, L., et al.: Deep learning for generic object detection: a survey. CoRR abs/1809.02165 (2018). http://arxiv.org/abs/1809.02165
  9. 9.
    Ohn-Bar, E., Trivedi, M.: Learning to detect vehicles by clustering appearance patterns. IEEE Trans. Intell. Transp. Syst. 16(5), 2511–2521 (2015)CrossRefGoogle Scholar
  10. 10.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Conference on Neural Information Processing Systems (2015)Google Scholar
  11. 11.
    Serpanos, D.: The cyber-physical systems revolution. Computer 51(3), 70–73 (2018)CrossRefGoogle Scholar
  12. 12.
    Viola, P.A., Jones, M.J.: Fast and robust classification using asymmetric AdaBoost and a detector cascade. In: Conference on Neural Information Processing Systems, pp. 1311–1318 (2001)Google Scholar
  13. 13.
    Nam, W., Dollar, P., Han, J.H.: Local decorrelation for improved pedestrian detection. In: Conference on Neural Information Processing Systems (2014)Google Scholar
  14. 14.
    Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2071–2084 (2015)CrossRefGoogle Scholar
  15. 15.
    Wolf, W.: Cyber-physical systems. Computer 42(3), 88–89 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhang, C., Viola, P.A.: Multiple-instance pruning for learning efficient cascade detectors. In: Conference on Neural Information Processing Systems, pp. 1681–1688 (2007)Google Scholar
  17. 17.
    Zhu, J., Zou, H., Rosset, S., Hastie, T.: Multi-class AdaBoost. Stat. Interface 2, 349–360 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ. Rey Juan CarlosMóstolesSpain
  2. 2.Univ. Politécnica de MadridMadridSpain

Personalised recommendations