Hardware and Software for Integrating Brain–Computer Interface with Internet of Things

  • Francisco LaportEmail author
  • Francisco J. Vazquez-Araujo
  • Paula M. Castro
  • Adriana Dapena
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


This work shows a system that appropriately integrates a Brain–Computer Interface and an Internet of Things environment based on eye state identification. The Electroencephalography prototype for brain electrical signal acquisition has been designed by the authors. This prototype uses only one electrode and its size is very small, which facilitates its use for all type of applications. We also design a classifier based on the simple calculation of a threshold ratio between alpha and beta rhythm powers. As shown from some experiment results, this threshold-based classifier shows high accuracies for medium response times, and according to that state identification any smart home environment with those response requirements could correctly act, for example ON–OFF switching room lights.


Brain–Computer Interface EEG devices Internet of Things 


  1. 1.
  2. 2.
    Eclipse Mosquitto.
  3. 3.
  4. 4.
  5. 5.
    Barry, R.J., Clarke, A.R., Johnstone, S.J., Magee, C.A., Rushby, J.A.: EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 118(12), 2765–2773 (2007)CrossRefGoogle Scholar
  6. 6.
    Estévez, P., et al.: Polysomnographic pattern recognition for automated classification of sleep-waking states in infants. Med. Biol. Eng. Comput. 40(1), 105–113 (2002)CrossRefGoogle Scholar
  7. 7.
    Kirkup, L., Searle, A., Craig, A., McIsaac, P., Moses, P.: EEG-based system for rapid on-off switching without prior learning. Med. Biol. Eng. Comput. 35(5), 504–509 (1997)CrossRefGoogle Scholar
  8. 8.
    Laport, F., Vazquez-Araujo, F.J., Castro, P.M., Dapena, A.: Brain-computer interfaces for Internet of Things. Multi. Digit. Publishing Inst. Proc. 2(18), 1179 (2018)Google Scholar
  9. 9.
    Li, L., Xiao, L., Chen, L.: Differences of EEG between eyes-open and eyes-closed states based on autoregressive method. J. Electron. Sci. Technol. 7(2), 175–179 (2009)Google Scholar
  10. 10.
    Ma, J., Zhang, Y., Cichocki, A., Matsuno, F.: A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control. IEEE Trans. Biomed. Eng. 62(3), 876–889 (2015)CrossRefGoogle Scholar
  11. 11.
    Narayana, S., Prasad, V., Warmerdam, K.: Mind your thoughts: BCI using single EEG electrode. IET Cyber-Phys. Syst.: Theor. Appl. (2018).
  12. 12.
    Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)CrossRefGoogle Scholar
  13. 13.
    Piatek, Ł., Fiedler, P., Haueisen, J., et al.: Eye state classification from electroencephalography recordings using machine learning algorithms. Digital Med. 4(2), 84 (2018)CrossRefGoogle Scholar
  14. 14.
    Reddy, T.K., Behera, L.: Online eye state recognition from EEG data using deep architectures. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 000712–000717. IEEE (2016)Google Scholar
  15. 15.
    Robinson, J.M., Frey, J.G., Stanford-Clark, A.J., Reynolds, A.D., Bedi, B.V.: Sensor networks and grid middleware for laboratory monitoring. In: 2005 First International Conference on E-Science and Grid Computing, pp. 8-pp. IEEE (2005)Google Scholar
  16. 16.
    Rösler, O., Suendermann, D.: A first step towards eye state prediction using EEG. In: Proceedings of the AIHLS (2013)Google Scholar
  17. 17.
    Saghafi, A., Tsokos, C.P., Goudarzi, M., Farhidzadeh, H.: Random eye state change detection in real-time using EEG signals. Expert Syst. Appl. 72, 42–48 (2017)CrossRefGoogle Scholar
  18. 18.
    Sulaiman, N., Taib, M.N., Lias, S., Murat, Z.H., Aris, S.A., Hamid, N.H.A.: Novel methods for stress features identification using EEG signals. Int. J. Simul.: Syst. Sci. Technol. 12(1), 27–33 (2011)Google Scholar
  19. 19.
    Wang, T., Guan, S.U., Man, K.L., Ting, T.: Time series classification for EEG eye state identification based on incremental attribute learning. In: 2014 International Symposium on Computer, Consumer and Control (IS3C), pp. 158–161. IEEE (2014)Google Scholar
  20. 20.
    Yeo, M.V., Li, X., Shen, K., Wilder-Smith, E.P.: Can SVM be used for automatic EEG detection of drowsiness during car driving? Saf. Sci. 47(1), 115–124 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringUniversidade da CoruñaA CoruñaSpain

Personalised recommendations