A Short Review of Some Aspects of Computational Neuroethology

  • Manuel GrañaEmail author
  • Javier de Lope Asiain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


Computational Neuroethology comprises a wide variety of devices, computational tools and techniques used in studies aiming to understand the neural substrate of the observable behavior. In this short review we focus on the description of available computational tools in a landscape of resources that is steadily growing as the scientific community recognizes this Computational Neuroethology as one of the frontiers of scientific endeavor. We comment on the biological basis and some examples of studies reported in the literature before providing a description and taxonomy of resources and tools.


  1. 1.
    Aguzzi, J., Costa, C., Fujiwara, Y., Iwase, R., Ramirez-Llorda, E., Menesatti, P.: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna. Sensors 9(11), 8438–8455 (2009)CrossRefGoogle Scholar
  2. 2.
    Akkaya, B., Tabar, Y.R., Gharbalchi, F., Ulusoy, I., Halici, U.: Tracking mice face in video. In: 20th National Biomedical Engineering Meeting (BIYOMUT), pp. 1–4, November 2016Google Scholar
  3. 3.
    Akkaya, İ.B., Halici, U.: Mouse face tracking using convolutional neural networks. IET Comput. Vis. 12(2), 153–161 (2018)CrossRefGoogle Scholar
  4. 4.
    Anderson, D.J., Adolphs, R.: A framework for studying emotions across species. Cell 157(1), 187–200 (2014)CrossRefGoogle Scholar
  5. 5.
    Andrienko, G., et al.: Visual analysis of pressure in football. Data Min. Knowl. Discov. 31(6), 1793–1839 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arbib, M.A.: Rana computatrix to human language: towards a computational neuroethology of language evolution. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 361(1811), 2345–2379 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bains, R.S., et al.: Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J. Neurosci. Methods 300, 37–47 (2018). Measuring Behaviour 2016CrossRefGoogle Scholar
  8. 8.
    Benice, T.S., Raber, J.: Object recognition analysis in mice using nose-point digital video tracking. J. Neurosci. Methods 168(2), 422–430 (2008)CrossRefGoogle Scholar
  9. 9.
    Bolles, R.C., Fanselow, M.S.: A perceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3(2), 291–301 (1980)CrossRefGoogle Scholar
  10. 10.
    Brown, A.E.X., Yemini, E.I., Grundy, L.J., Jucikas, T., Schafer, W.R.: A dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans locomotion. Proc. Natl. Acad. Sci. 110(2), 791–796 (2013)CrossRefGoogle Scholar
  11. 11.
    Burgos-Artizzu, X.P., Dollár, P., Lin, D., Anderson, D.J., Perona, P.: Social behavior recognition in continuous video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1322–1329, June 2012Google Scholar
  12. 12.
    Carreno, M.I., et al.: First approach to the analysis of spontaneous activity of mice based on permutation entropy. In: 2015 4th International Work Conference on Bioinspired Intelligence (IWOBI), pp. 197–204, June 2015Google Scholar
  13. 13.
    Cha, B.J., Bae, B.S., Cho, S.K., Oh, J.K.: A simple method to quantify fish behavior by forming time-lapse images. Aquac. Eng. 51, 15–20 (2012)CrossRefGoogle Scholar
  14. 14.
    Cho, H.-J., et al.: Newly developed method for mouse olfactory behavior tests using an automatic video tracking system. Auris Nasus Larynx 45(1), 103–110 (2018)CrossRefGoogle Scholar
  15. 15.
    Conklin, E.E., Lee, K.L., Schlabach, S.A., Woods, I.G.: Videohacking: automated tracking and quantification of locomotor behavior with open source software and off-the-shelf video equipment. J. Undergrad. Neurosci. Educ. 13(3), A120–A125 (2015). PMID: 26240518Google Scholar
  16. 16.
    Cronin, C.J., Feng, Z., Schafer, W.R.: Automated Imaging of C. elegans Behavior, pp. 241–251. Humana Press, Totowa (2006)Google Scholar
  17. 17.
    Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J., Perona, P.: Automated monitoring and analysis of social behavior in drosophila. Nat. Methods 6, 297 (2009)CrossRefGoogle Scholar
  18. 18.
    Dell, A.I., et al.: Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29(7), 417–428 (2014)CrossRefGoogle Scholar
  19. 19.
    Desland, F.A., Afzal, A., Warraich, Z., Mocco, J.: Manual versus automated rodent behavioral assessment: comparing efficacy and ease of Bederson and Garcia neurological deficit scores to an open field video-tracking system. J. Cent. Nerv. Syst. Dis. 6, 7–14 (2014). PMID: 24526841CrossRefGoogle Scholar
  20. 20.
    Eyjolfsdottir, Eyrun, et al.: Detecting social actions of fruit flies. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 772–787. Springer, Cham (2014). Scholar
  21. 21.
    Fanselow, M.S., Lester, L.S.: A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Bolles, R.C., Beecher, M.D. (eds.) Evol. Learn., pp. 185–212. Lawrence Erlbaum Associates Inc., Hillsdale (1988)Google Scholar
  22. 22.
    Fontaine, E., et al.: Automated visual tracking for studying the ontogeny of zebrafish swimming. J. Exp. Biol. 211(8), 1305–1316 (2008)CrossRefGoogle Scholar
  23. 23.
    Manuel Graña for CybSPEED: On The Proposed Cybspeed Project Experimental Research Protocols. Zenodo (2018). Accessed Aug 2018
  24. 24.
    Fournely, M., Petit, Y., Wagnac, É., Laurin, J., Callot, V., Arnoux, P.-J.: High-speed video analysis improves the accuracy of spinal cord compression measurement in a mouse contusion model. J. Neurosci. Methods 293, 1–5 (2018)CrossRefGoogle Scholar
  25. 25.
    Fröhlich, H., Claes, K., De Wolf, C., Van Damme, X., Michel, A.: A machine learning approach to automated gait analysis for the Noldus catwalk system. IEEE Trans. Biomed. Eng. 65(5), 1133–1139 (2018)Google Scholar
  26. 26.
    Hong, W., Kim, D.-W., Anderson, D.J.: Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158(6), 1348–1361 (2014)CrossRefGoogle Scholar
  27. 27.
    Idei, H., Murata, S., Chen, Y., Yamashita, Y., Tani, J., Ogata, T.: Reduced behavioral flexibility by aberrant sensory precision in autism spectrum disorder: a neurorobotics experiment. In: 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 271–276, September 2017Google Scholar
  28. 28.
    Jhuang, H., et al.: Automated home-cage behavioural phenotyping of mice. Nat. Commun. 1, 68 (2010)CrossRefGoogle Scholar
  29. 29.
    Kabra, M., Robie, A.A., Rivera-Alba, M., Branson, S., Branson, K.: JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10, 64 (2012)CrossRefGoogle Scholar
  30. 30.
    Kearns, W.D., Fozard, J.L., Nams, V.O.: Movement path tortuosity in free ambulation: relationships to age and brain disease. IEEE J. Biomed. Health Inform. 21(2), 539–548 (2017)CrossRefGoogle Scholar
  31. 31.
    Kelso, J.A.S., Dumas, G., Tognoli, E.: Outline of a general theory of behavior and brain coordination. Neural Netw. 37, 120–131 (2013). Twenty-fifth Anniversay Commemorative IssueCrossRefGoogle Scholar
  32. 32.
    Cario, C.L., Farrell, T.C., Milanese, C., Burton, E.A.: Automated measurement of zebrash larval movement. J. Physiol. 589(15), 3703–3708 (2011)CrossRefGoogle Scholar
  33. 33.
    (Sam) Ma, Z.: Towards computational models of animal cognition, an introduction for computer scientists. Cognit. Syst. Res. 33, 42–69 (2015)Google Scholar
  34. 34.
    Menzel, R., Greggers, U.: The memory structure of navigation in honeybees. J. Comp. Physiol. A 201(6), 547–561 (2015)CrossRefGoogle Scholar
  35. 35.
    Mobbs, D.: Foraging under competition: the neural basis of input-matching in humans. J. Neurosci. 33(23), 9866–9872 (2013)CrossRefGoogle Scholar
  36. 36.
    Mobbs, D., Kim, J.J.: Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015). NeuroeconomicsCrossRefGoogle Scholar
  37. 37.
    Morrow-Tesch, J., Dailey, J.W., Jiang, H.: A video data base system for studying animal behavior. J. Anim. Sci. 76(10), 2605–2608 (1998)CrossRefGoogle Scholar
  38. 38.
    Muto, A., Lal, P., Ailani, D., Abe, G., Itoh, M., Kawakami, K.: Activation of the hypothalamic feeding centre upon visual prey detection. Nat. Commun. 8, 15029 (2017)CrossRefGoogle Scholar
  39. 39.
    Obdrzálek, S.: Accuracy and robustness of kinect pose estimation in the context of coaching of elderly population. In: Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, pp. 1188–1193 (2012)Google Scholar
  40. 40.
    Ohayon, S., Avni, O., Taylor, A.L., Perona, P., Roian, S.E.: Automated multi-day tracking of marked mice for the analysis of social behaviour. J. Neurosci. Methods 219(1), 10–19 (2013)CrossRefGoogle Scholar
  41. 41.
    Papadakis, V.M., Papadakis, I.E., Lamprianidou, F., Glaropoulos, A., Kentouri, M.: A computer-vision system and methodology for the analysis of fish behavior. Aquac. Eng. 46, 53–59 (2012)CrossRefGoogle Scholar
  42. 42.
    Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G.: idtracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11, 743 (2014)CrossRefGoogle Scholar
  43. 43.
    Pham, J., Cabrera, S.M., Sanchis-Segura, C., Wood, M.A.: Automated scoring of fear-related behavior using ethovision software. J. Neurosci. Methods 178(2), 323–326 (2009)CrossRefGoogle Scholar
  44. 44.
    Riley, J.R.: Tracking bees with harmonic radar. Nature 379, 29 (1996)CrossRefGoogle Scholar
  45. 45.
    Saberioon, M.M., Cisar, P.: Automated multiple fish tracking in three-dimension using a structured light sensor. Comput. Electron. Agric. 121, 215–221 (2016)CrossRefGoogle Scholar
  46. 46.
    Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. In: Cipolla, R., Battiato, S., Farinella, G. (eds.) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol. 411, pp. 119–135. Springer, Heidelberg (2013). Scholar
  47. 47.
    Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Conditional models for contextual human motion recognition. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, vol. 2, pp. 1808–1815, October 2005Google Scholar
  48. 48.
    Squire, L.R.: Encyclopedia of Neuroscience. In: Encyclopedia of Neuroscience, vol. 3. Elsevier/Academic Press (2009)Google Scholar
  49. 49.
    Stafstrom, J.A., Michalik, P., Hebets, E.A.: Sensory system plasticity in a visually specialized, nocturnal spider. Sci. Rep. 7, 46627 (2017)CrossRefGoogle Scholar
  50. 50.
    Stewart, A.M.: A novel 3D method of locomotor analysis in adult zebrafish. J. Neurosci. Methods 255, 66–74 (2015)CrossRefGoogle Scholar
  51. 51.
    Stone, E.E., Skubic, M.: Unobtrusive, continuous, in-home gait measurement using the microsoft kinect. IEEE Trans. Biomed. Eng. 60(10), 2925–2932 (2013)CrossRefGoogle Scholar
  52. 52.
    Tang, B.: An in vivo study of hypoxia-inducible factor-1\(\alpha \) signaling in ginsenoside Rg1-mediated brain repair after hypoxia/ischemia brain injury. Pediatr. Res. 81, 120 (2016)CrossRefGoogle Scholar
  53. 53.
    Todd, P.A.C., McCue, H.V., Haynes, L.P., Barclay, J.W., Burgoyne, R.D.: Interaction of ARF-1.1 and neuronal calcium sensor-1 in the control of the temperature-dependency of locomotion in caenorhabditis elegans. Sci. Rep. 6, 30023 (2016)CrossRefGoogle Scholar
  54. 54.
    Tsai, H.-Y., Huang, Y.-W.: Image tracking study on courtship behavior of drosophila. PLoS One 7(4), 1–8 (2012)Google Scholar
  55. 55.
    Urgen, B., Plank, M., Ishiguro, H., Poizner, H., Saygin, A.: EEG theta and Mu oscillations during perception of human and robot actions. Front. Neurorobotics 7, 19 (2013)CrossRefGoogle Scholar
  56. 56.
    Wang, Y.-N.: Behavioural screening of zebrafish using neuroactive traditional Chinese medicine prescriptions and biological targets. Sci. Rep. 4, 5311 (2014)CrossRefGoogle Scholar
  57. 57.
    Wario, F., Wild, B., Couvillon, M., Rojas, R., Landgraf, T.: Automatic methods for long-term tracking and the detection and decoding of communication dances in honeybees. Front. Ecol. Evol. 3, 103 (2015)CrossRefGoogle Scholar
  58. 58.
    Zhao, J., et al.: Modified motion influence map and recurrent neural network-based monitoring of the local unusual behaviors for fish school in intensive aquaculture. Aquaculture 493, 165–175 (2018)CrossRefGoogle Scholar
  59. 59.
    Zhu, L., Weng, W.: Catadioptric stereo-vision system for the real-time monitoring of 3D behavior in aquatic animals. Physiol. Behav. 91(1), 106–119 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computational Intelligence GroupUniversity of the Basque Country, (UPV/EHU)San SebastiánSpain
  2. 2.Polytechnical University Madrid (UPM)MadridSpain

Personalised recommendations