Brushstrokes of the Emotional Brain: Cortical Asymmetries for Valence Dimension

  • Jennifer SorinasEmail author
  • José Manuel Ferrández Vicente
  • Eduardo Fernández-Jover
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


Understanding the neurophysiology of emotions, the neuronal structures involved in the processing of emotional information and the circuits by which they act, is key to design applications in the field of affective neuroscience, both to advance in new treatments and in applications of brain-computer interactions. With this objective, we have carried out a study of cortical asymmetries based on the spectral power and differential entropy (DE) of the electroencephalographic signal of 24 subjects stimulated with videos of positive and negative emotional content. The results have shown different interhemispheric asymmetries throughout the cortex, presenting opposite patterns for both emotional categories. In addition, increased activity has also been observed in the right hemisphere and in anterior cortical regions during emotion processing. These preliminary results are encouraging for elucidating the neuronal circuits of the emotional brain.


Asymmetries Differential entropy EEG Emotions Valence dimension 



This work was supported in part by the Spanish National Research Program (MAT2015-69967-C3-1), the Spanish Blind Organization (ONCE), the Seneca Foundation - Agency of Science and Technology of the Region of Murcia and the Ministry of Education of Spain (FPU grant AP2013/01842).


  1. 1.
    Compton, R.J., et al.: Paying attention to emotion: an fMRI investigation of cognitive and emotional Stroop tasks. Cogn. Affect. Behav. Neurosci. 3(2), 81–96 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Schupp, H.T., Stockburger, J., Codispoti, M., Junghofer, M., Weike, A.I., Hamm, A.O.: Selective visual attention to emotion. J. Neurosci. 27(5), 1082–1089 (2007)CrossRefGoogle Scholar
  3. 3.
    Schwarz, N.: Emotion, cognition, and decision making. Cogn. Emot. 14, 433–440 (2000)CrossRefGoogle Scholar
  4. 4.
    Ekman, P.: Expression and the nature of emotion. Approaches Emot. 3, 19–344 (1984)Google Scholar
  5. 5.
    Panksepp, J.A.: A critical role for affective neuroscience in resolving what is basic about emotions. Psychol. Rev. 99, 554–560 (1992)CrossRefGoogle Scholar
  6. 6.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective and physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  7. 7.
    Nijboer, F., Morin, F.O., Carmien, S.P., Koene, R.A., Leon, E., Hoffmann, U.: Affective braincomputer interfaces: psychophysiological markers of emotion in healthy persons and in persons with amyotrophic lateral sclerosis. In: Proceedings of 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, ACII 2009 (2009)Google Scholar
  8. 8.
    Mauss, I.B., Robinson, M.D.: Measures of emotion: a review. Cogn. Emot. 23(2), 209–237 (2009)CrossRefGoogle Scholar
  9. 9.
    Kober, H., Barrett, L.F., Joseph, J., Bliss-Moreau, E., Lindquist, K., Wager, T.D.: Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 42(2), 998–1031 (2008)CrossRefGoogle Scholar
  10. 10.
    Kleinginna, P.R., Kleinginna, A.M.: A categorized list of motivation definitions, with a suggestion for a consensual definition. Trends Cogn. Sci. 16(11), 533–540 (2012)CrossRefGoogle Scholar
  11. 11.
    Lindquist, K.A., Barrett, L.F.: A functional architecture of the human brain: emerging insights from the science of emotion. Motiv. Emot. 5(3), 263–291 (1981)CrossRefGoogle Scholar
  12. 12.
    Dalgleish, T.: The emotional brain. Nat. Rev. Neurosci. 5, 283–289 (2004)CrossRefGoogle Scholar
  13. 13.
    Scherer, K.R.: What are emotions? And how can they be measured? Soc. Sci. Inf. 44(4), 695–729 (2005)CrossRefGoogle Scholar
  14. 14.
    Ekman, P., Levenson, R.W., Friesen, W.V.: Autonomic nervous system activity distinguishes among emotions. Science 221(4616), 1208–1210 (1983)CrossRefGoogle Scholar
  15. 15.
    Panksepp, J.: Emotions as natural kinds within the mammalian brain. In: Handbook of Emotions, 2nd ed, pp. 137–156. Lewis & J. M. Haviland-Jones/Guilford Press, New York (2000)Google Scholar
  16. 16.
    Phan, K.L., Wager, T., Taylor, S.F., Liberzon, I.: Functional neuroanatomy of emotion: a metaanalysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348 (2002)CrossRefGoogle Scholar
  17. 17.
    Murphy, F.C., Nimmo-Smith, I., Lawrence, A.D.: Functional neuroanatomy of emotions: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3(3), 207–233 (2003)CrossRefGoogle Scholar
  18. 18.
    Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)CrossRefGoogle Scholar
  19. 19.
    Rolls, E.T.: A theory of emotion, and its application to understanding the neural basis of emotion. Cogn. Emot. 4, 161–190 (1990)CrossRefGoogle Scholar
  20. 20.
    Lang, P.J., Bradley, M.M., Cuthbert, B.N.: Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biol. Psychiatry 44(12), 1248–1263 (1998)CrossRefGoogle Scholar
  21. 21.
    Davidson, R.J., Ekman, P., Saron, C.D., Senulis, J.A., Friesen, W.V.: Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. I. J. Pers. Soc. Psychol. 58, 330–341 (1990)CrossRefGoogle Scholar
  22. 22.
    Sorinas, J., Grima, M.D., Ferrandez, J.M., Fernandez, E.: Identifying suitable brain regions and trial size segmentation for positive/negative emotion recognition. Int. J. Neural Syst. 29(2), 1–14 (2019)CrossRefGoogle Scholar
  23. 23.
    Davidson, R.J.: EEG measures of cerebral asymmetry. Int. J. Neurosci. 39(1986), 71–89 (1988)CrossRefGoogle Scholar
  24. 24.
    Shi, L.-C., Jiao, Y.-Y., Lu, B.-L.: Differential entropy feature for EEG-based emotion classification. In: International IEEE/EMBS Conference on Neural Engineering NER, pp. 81–84 (2013)Google Scholar
  25. 25.
    Sorinas, J., et al.: Setting the parameters for an accurate EEG (electroencephalography)-based emotion recognition system. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 265–273. Springer, Cham (2017). Scholar
  26. 26.
    Chatrian, G.E., Lettich, E., Nelson, P.L.: Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. Am. J. EEG Technol. 25, 83–92 (1985)CrossRefGoogle Scholar
  27. 27.
    Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. Wiley, Hoboken (1999)zbMATHGoogle Scholar
  28. 28.
    Zheng, W., Zhu, J., Lu, B., Member, S.: Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect Comput. (2017)Google Scholar
  29. 29.
    Duan, R.-N., Zhu, J.-Y., Lu, B.-L.: Differential entropy feature for EEG-based emotion classification. In: Proceedings of 6th International IEEE/EMBS Conference on Neural Engineering, pp. 81–84 (2013)Google Scholar
  30. 30.
    Coan, J.A., Allen, J.J.B.: Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 67(1–2), 7–49 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of BioengineeringUniversity Miguel Hernández and CIBER BBN Avenida de la UniversidadElcheSpain
  2. 2.Department of Electronics and Computer TechnologyUniversity of CartagenaCartagenaSpain

Personalised recommendations