Trajectory Planning of a Quadrotor to Monitor Dependent People

  • Lidia M. Belmonte
  • Rafael Morales
  • Arturo S. García
  • Eva Segura
  • Paulo Novais
  • Antonio Fernández-CaballeroEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


This article introduces a framework for assisting dependent people at home through a vision-based autonomous unmanned aerial vehicle (UAV). Such an aircraft equipped with onboard cameras can be useful for monitoring and recognizing a dependent’s activity. This work is focused on the problem of planning the flight path of a quadrotor to perform monitoring tasks. The objective is to design a trajectory planning algorithm that allows the UAV to position itself for the sake of capturing images of the dependent person’s face. These images will be later treated by a base station to evaluate the persons emotional state, together with his/her behavior, this way determining the assistance needed in each situation. Numerical simulations have been carried out to validate the proposed algorithms. The results show the effectiveness of the trajectory planner to generate smooth references to our previously designed GPI (generalized proportional integral) controller. This demonstrates that a quadrotor is able to perform monitoring flights with a high motion precision.


Home assistance Dependent people Unmanned aerial vehicles Quadrotor Trajectory planning Generalized proportional integrated controller 



This work has been partially supported by Spanish Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant. Lidia M. Belmonte holds FPU014/05283 scholarship from Spanish Ministerio de Educación y Formación Profesional.


  1. 1.
    Almansa-Valverde, S., Castillo, J.C., Fernndez-Caballero, A.: Mobile robot map building from time-of-flight camera. Expert Syst. Appl. 39(10), 8835–8843 (2012)Google Scholar
  2. 2.
    Belmonte, L.M., Castillo, J.C., Fernández-Caballero, A., Almansa-Valverde, S., Morales, R.: Flying depth camera for indoor mapping and localization. In: Mohamed, A., Novais, P., Pereira, A., Villarrubia González, G., Fernández-Caballero, A. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 376, pp. 243–251. Springer, Cham (2015). Scholar
  3. 3.
    Belmonte, L.M., Morales, R., Fernández-Caballero, A., Somolinos, J.A.: A tandem active disturbance rejection control for a laboratory helicopter with variable speed rotors. IEEE Trans. Ind. Electron. 63(10), 6395–6406 (2016)Google Scholar
  4. 4.
    Belmonte, L.M., Morales, R., Fernández-Caballero, A., Somolinos, J.A.: Robust decentralized nonlinear control for a twin rotor MIMO system. Sensors 16(8) (2016). Article 1160Google Scholar
  5. 5.
    Belmonte, L.M., Morales, R., Fernández-Caballero, A., Somolinos, J.A.: Nonlinear cascade-based control for a twin rotor MIMO system. In: Nonlinear Systems - Design, Analysis, Estimation and Control, pp. 265–292. In-Tech (2016)Google Scholar
  6. 6.
    Castillo, J.C., Castro-González, Á., Alonso-Martín, F., Fernández-Caballero, A., Salichs, M.Á.: Emotion detection and regulation from personal assistant robot in smart environment. In: Costa, A., Julian, V., Novais, P. (eds.) Personal Assistants: Emerging Computational Technologies. ISRL, vol. 132, pp. 179–195. Springer, Cham (2018). Scholar
  7. 7.
    Castillo, J.C., et al.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. 8(2), 357–367 (2016)Google Scholar
  8. 8.
    Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four rotor mini rotorcraft. IEEE Trans. Control Syst. 12(4), 510–516 (2004)Google Scholar
  9. 9.
    Chocoteco, J., Morales, R., Feliu, V.: Enhancing the trajectory generation of a stair-climbing mobility system. Sensors 17(1), 1–31 (2017)Google Scholar
  10. 10.
    Chocoteco, J., Morales, R., Feliu, V., Sánchez, L.: Trajectory planning for a stair-climbing mobility system using laser distance sensors. IEEE Sens. J. 10(3), 944–956 (2016)Google Scholar
  11. 11.
    Chocoteco, J., Morales, R., Feliu, V.: Improving the climbing/descent performance of stair-climbing systems confronting architectural barriers with geometric disturbances. Mechatronics 30, 11–26 (2015)Google Scholar
  12. 12.
    Fernández-Caballero, A., Belmonte, L.M., Morales, R., Somolinos, J.A.: Generalized proportional integral control for an unmanned quadrotor system. Int. J. Adv. Robot. Syst. 12 (2015). Article 85Google Scholar
  13. 13.
    Fernández-Caballero, A., et al.: Smart environment architecture for emotion recognition and regulation. J. Biomed. Inform. 64, 55–73 (2016)Google Scholar
  14. 14.
    Gascueña, J.M., Fernández-Caballero, A.: Agent-oriented modeling and development of a person-following mobile robot. Expert Syst. Appl. 38(4), 4280–4290 (2011)Google Scholar
  15. 15.
    Gascueña, J.M., Fernández-Caballero, A.: Agent-based modeling of a mobile robot to detect and follow humans. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 80–89. Springer, Heidelberg (2009). Scholar
  16. 16.
    Igual, R., Plaza, I., Medrano, C., Rubio, M.A.: Personalizable smartphone-based system adapted to assist dependent people. J. Ambient. Intell. Smart Environ. 6(6), 569–593 (2014)Google Scholar
  17. 17.
    Kim, S.J., Lim, G.J., Cho, J., Côté, M.J.: Drone-aided healthcare services for patients with chronic diseases in rural areas. J. Intell. Robot. Syst. 88(1), 163–180 (2017)Google Scholar
  18. 18.
    Lozano-Monasor, E., López, M.T., Vigo-Bustos, F., Fernández-Caballero, A.: Facial expression recognition in ageing adults: from lab to ambient assisted living. J. Ambient. Intell. Humaniz. Comput. 8(4), 567–578 (2017)Google Scholar
  19. 19.
    Lozano, R.: Unmanned Aerial Vehicles-Embedded Control. Wiley, Hoboken (2010)Google Scholar
  20. 20.
    Todd, C., et al.: Towards an autonomous UAV for indoor flight in healthcare: a review of research challenges and approaches. Int. J. Emerging Technol. Adv. Eng. 5(8), 21–28 (2015)Google Scholar
  21. 21.
    Maglogiannis, I., Ioannou, C., Tsanakas, P.: Fall detection and activity identification using wearable and hand-held devices. Integr. Comput. Aided Eng. 23(2), 161–172 (2016)Google Scholar
  22. 22.
    Martínez-Gómez, J., Fernández-Caballero, A., García-Varea, I., Rodríguez, L., Romero-González, C.: A taxonomy of vision systems for ground mobile robots. Int. J. Adv. Robot. Syst. 11, 111 (2014)Google Scholar
  23. 23.
    Morales, R., Chocoteco, J., Feliu, V., Sira-Ramrez, H.: Obstacle surpassing and posture control of a stair-climbing robotic mechanism. Control Eng. Pract. 21, 604–621 (2013)Google Scholar
  24. 24.
    Morales, R., Feliu, V., González, A.: Optimized obstacle avoidance trajectory generation for a reconfigurable staircase climbing wheelchair. Robot. Auton. Syst. 58, 97–114 (2010)Google Scholar
  25. 25.
    Morales, R., González, A., Feliu, V., Pintado, P.: Environment adaptation of a new staircase climbing wheelchair. Auton. Robot. 23, 275–292 (2007)Google Scholar
  26. 26.
    Morales, R., Sira-Ramírez, H.: Trajectory tracking for the magnetic ball levitation system via exact feedforward linearization and GPI control. Int. J. Control 83, 1155–1166 (2010)zbMATHGoogle Scholar
  27. 27.
    Morales, R., Sira-Ramírez, H., Feliu, V., González, A.: Adaptive control based on fast online algebraic identification and GPI control for magnetic levitation systems with time-varying input gain. Int. J. Control 87, 1604–1621 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Rodriguez, F.J., Rico, F.M., Olivera, V.M.: Neural networks for recognizing human activities in home-like environments. Integr. Comput. Aided Eng. 26(1), 37–47 (2019)Google Scholar
  29. 29.
    Solea, R., Nunes, U.: Trajectory planning and sliding-mode control based trajectory-tracking for cybercars. Integr. Comput. Aided Eng. 14(1), 33–47 (2007)Google Scholar
  30. 30.
    Todd, C., et al.: A proposed UAV for indoor patient care. Technol. Health Care (2015). Scholar
  31. 31.
    Zemalache, K.M., Beji, L., Maaref, H.: Two inertial models of X4-flyers dynamics, motion planning and control. Integr. Comput. Aided Eng. 14(2), 107–119 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lidia M. Belmonte
    • 1
    • 2
  • Rafael Morales
    • 1
    • 2
  • Arturo S. García
    • 1
    • 2
  • Eva Segura
    • 1
    • 2
  • Paulo Novais
    • 3
  • Antonio Fernández-Caballero
    • 1
    • 2
    Email author
  1. 1.Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Escuela Técnica Superior de Ingenieros IndustrialesUniversidad de Castilla-La ManchaAlbaceteSpain
  3. 3.Escola de EngenhariaUniversidade do MinhoBragaPortugal

Personalised recommendations