Distinguishing Aging Clusters and Mobile Devices by Hand-Wrist Articulation: A Case of Study

  • Daniel Palacios-AlonsoEmail author
  • Carlos Lázaro-Carrascosa
  • Raquel Mas-García
  • José Manuel Ferrández Vicente
  • Andrés Gómez-Rodellar
  • Pedro Gómez-Vilda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


Nowadays, video games are not considered only mere hobbies. The use of these tools is increased in last years. On the other hand, gamification and usability techniques have empowered the improvement of communication between player/user and Aided Communication Devices (ACD). New ACDs provide a novel approach to capture biomechanical features or indicators. This work consists of a novel methodology development to capture biomechanical indicators throughout multiplatform video games. The present work has an exploratory nature to measure, hand-wrist articulation features estimated from the smartphone’s accelerometer. The intention of the study is to answer some hypothesis for instance, if the device is crucial to evaluate player’s movement capabilities or if the age of the person as a key biomarker. Once these indicators have been tested, it will be able to use them in studies of neurodegenerative diseases, where involuntary tremor is one of the most important observable correlates.


Hand-wrist articulation Video games Gamification Mobile devices Neurodegenerative diseases 



This work is being funded by grants TEC2016 – 77791 – C4 – 4 – R (MINECO, Spain) and CENIE _ TECA – PARK_55_02 INTERREG V – A Spain – Portugal (POCTEP).


  1. 1.
    Unity Homepage. Accessed 3 Jan 2019
  2. 2.
    Anderson, C.A.: An update on the effects of playing violent video games. J. Adolesc. 27(1), 113–122 (2004)CrossRefGoogle Scholar
  3. 3.
    Anderson, C.A., Bushman, B.J.: Effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, and prosocial behavior: A meta-analytic review of the scientific literature. Psychol. Sci. 12(5), 353–359 (2001)CrossRefGoogle Scholar
  4. 4.
    Anguera, J.A., et al.: Video game training enhances cognitive control in older adults. Nature 501(7465), 97 (2013)CrossRefGoogle Scholar
  5. 5.
    Boslaugh, S.: Statistics in a Nutshell: A Desktop Quick Reference. O’Reilly Media Inc., Sebastopol (2012)Google Scholar
  6. 6.
    Cohen, J.: Statistical Power Analysis for the Behavioural Sciences. Routledge, Abingdon (1988)zbMATHGoogle Scholar
  7. 7.
    Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R., et al.: Movement disorder society-sponsored revision of the unified parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord.: Off. J. Mov. Disord. Soc. 23(15), 2129–2170 (2008)CrossRefGoogle Scholar
  8. 8.
    González, C.: Videojuegos para la transformación social. Aportaciones conceptuales y metodológicas. Ph.D. thesis, Tesis para optar a grado de Doctor: Universidad de Deusto. Recuperado el 27 (2014)Google Scholar
  9. 9.
    Hoehn, M.M., Yahr, M.D., et al.: Parkinsonism: onset, progression, and mortality. Neurology 50(2), 318–318 (1998)CrossRefGoogle Scholar
  10. 10.
    Jiménez-Hernández, E.M., Oktaba, H., Piattini, M., Arceo, F.D.B., Revillagigedo-Tulais, A.M., Flores-Zarco, S.V.: Methodology to construct educational video games in software engineering. In: 2016 4th International Conference in Software Engineering Research and Innovation (CONISOFT), pp. 110–114. IEEE (2016)Google Scholar
  11. 11.
    Korn, O.: Industrial playgrounds: how gamification helps to enrich work for elderly or impaired persons in production. In: Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 313–316. ACM (2012)Google Scholar
  12. 12.
    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 50–60 (1947)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Massey Jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)CrossRefGoogle Scholar
  14. 14.
    Mhatre, P.V., et al.: Wii fit balance board playing improves balance and gait in Parkinson disease. PM&R 5(9), 769–777 (2013)CrossRefGoogle Scholar
  15. 15.
    Rosnow, R.L., Rosenthal, R.: Effect sizes for experimenting psychologists. Can. J. Exp. Psychol./Rev. Can. Psychol. expérimentale 57(3), 221 (2003)CrossRefGoogle Scholar
  16. 16.
    Silva, K.G., et al.: Effects of virtual rehabilitation versus conventional physical therapy on postural control, gait, and cognition of patients with Parkinsons disease: study protocol for a randomized controlled feasibility trial. Pilot Feasibility Stud. 3(1), 68 (2017)CrossRefGoogle Scholar
  17. 17.
    Staiano, A.E., Flynn, R.: Therapeutic uses of active videogames: a systematic review. Games Health J. 3(6), 351–365 (2014)CrossRefGoogle Scholar
  18. 18.
    Stanmore, E., Stubbs, B., Vancampfort, D., de Bruin, E.D., Firth, J.: The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 78, 34–43 (2017)CrossRefGoogle Scholar
  19. 19.
    Stephens, M.: Introduction to kolmogorov (1933) on the empirical determination of a distribution. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 93–105. Springer, Heidelberg (1992). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Escuela Técnica Superior de Ingeniería InformáticaUniversidad Rey Juan CarlosMóstoles, MadridSpain
  2. 2.Neuromorphic Speech Processing Lab, Center for Biomedical TechnologyUniversidad Politécnica de MadridPozuelo de Alarcón, MadridSpain
  3. 3.Universidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations