Advertisement

Advanced Trajectory Generator for Two Carts with RGB-D Sensor on Circular Rail

  • Ramón Panduro
  • Eva Segura
  • Lidia M. Belmonte
  • Paulo Novais
  • Jesús Benet
  • Antonio Fernández-CaballeroEmail author
  • Rafael Morales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)

Abstract

This paper presents a motorised circular rail that generates the motion of two carts with an RGB-D sensor each. The objective of both carts’ trajectory generation is to track a person’s physical rehabilitation exercises from two points of view and his/her emotional state from one of these viewpoints. The person is moving freely his/her position and posture within the circle drawn by the motorised rail. More specifically, this paper describes the calculation of trajectories for safe motion of the two carts on the motorised circular rail in detail. Lastly, a study case is offered to show the performance of the described control algorithms for trajectory generation.

Keywords

Physical rehabilitation Facial emotion detection Moving cart Motorised circular rail RGB-D sensor 

Notes

Acknowledgements

This work was partially supported by Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI) / European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant.

References

  1. 1.
    Tian, G., Liu, L., Ri, J.H., Liu, Y.: ObjectFusion: an object detection and segmentation framework with RGB-D SLAM and convolutional neural networks. Author links open overlay panel bYiranSunaGoogle Scholar
  2. 2.
    Freitas, D., et al.: Development and evaluation of a Kinect based motor rehabilitation game. Simposio Brasileiro de Jogos e Entretenimento Digital, pp. 144–153 (2012)Google Scholar
  3. 3.
    Chang, Y., Chen, S., Huang, J.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 326, 2566–2570 (2011)Google Scholar
  4. 4.
    López-Valles, J.M., Fernández, M.A., Fernández-Caballero, A.: Stereovision depth analysis by two-dimensional motion charge memories. Pattern Recognit. Lett. 28(1), 20–30 (2007)Google Scholar
  5. 5.
    Oliver, M., Montero, F., Molina, J.P., González, P., Fernández-Caballero, A.: Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors. Front. Inf. Technol. Electron. Eng. 17(4), 348–364 (2016)Google Scholar
  6. 6.
    Oliver, M., Montero, F., Fernández-Caballero, A., González, P., Molina, J.P.: RGB-D assistive technologies for acquired brain injury: description and assessment of user experience. Expert Syst. 32(3), 370–380 (2015)Google Scholar
  7. 7.
    Castillo, J.C., Fernández-Caballero, A., Castro-González, Á., Salichs, M.A., López, M.T.: A framework for recognizing and regulating emotions in the elderly. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 320–327. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13105-4_46Google Scholar
  8. 8.
    Lozano-Monasor, E., López, M.T., Fernández-Caballero, A., Vigo-Bustos, F.: Facial expression recognition from webcam based on active shape models and support vector machines. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 147–154. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13105-4_23Google Scholar
  9. 9.
    Wang, P., Li, W., Ogunbona, P., Wan, J., Escalera, S.: RGB-D-based human motion recognition with deep learning: a survey. Comput. Vision Image Underst. 171, 118–139 (2018)Google Scholar
  10. 10.
    Fernández-Caballero, A., López, M.T., Saiz-Valverde, S.: Dynamic stereoscopic selective visual attention (DSSVA): integrating motion and shape with depth in video segmentation. Expert Syst. Appl. 34(2), 1394–1402 (2008)Google Scholar
  11. 11.
    Castillo, J.C., Fernández-Caballero, A., Serrano-Cuerda, J., López, M.T., Martínez-Rodrigo, A.: Smart environment architecture for robust people detection by infrared and visible video fusion. J. Ambient Intel. Humanized Comput. 8(2), 223–237 (2017)Google Scholar
  12. 12.
    Fernández-Caballero, A., López, M.T., Serrano-Cuerda, J.: Thermal-infrared pedestrian ROI extraction through thermal and motion information fusion. Sensors 14(4), 6666–6676 (2014)Google Scholar
  13. 13.
    Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. Appl. Soft Comput. 10(1), 318–331 (2010)Google Scholar
  14. 14.
    Florea, A.G., Buiu, C.: A distributed approach to the control of multi-robot systems using XP colonies. Integr. Comput.-Aided Eng. 25(1), 15–29 (2018)Google Scholar
  15. 15.
    Morales, R., Chocoteco, J., Feliu, V., Sira-Ramírez, H.: Obstacle surpassing and posture control of a stair-climbing robotic mechanism. Control Eng. Pract. 21, 604–621 (2013)Google Scholar
  16. 16.
    Morales, R., González, A., Feliu, V., Pintado, P.: Environment adaptation of a new staircase climbing wheelchair. Auton. Robots 23, 275–292 (2007)Google Scholar
  17. 17.
    Panwar, R., Sukavanam, N.: Trajectory tracking using artificial neural network for stable human-like gait with upper body motion. Neural Comput. Appl. (2018).  https://doi.org/10.1007/s00521-018-3842-1
  18. 18.
    Almansa-Valverde, S., Castillo, J.C., Fernández-Caballero, A.: Mobile robot map building from time-of-flight camera. Expert Syst. Appl. 39(10), 8835–8843 (2012)Google Scholar
  19. 19.
    Gascueña, J.M., Fernández-Caballero, A.: Agent-oriented modeling and development of a person-following mobile robot. Expert Syst. Appl. 38(4), 4280–4290 (2011)Google Scholar
  20. 20.
    Morales, R., Somolinos, J.A., Fernández-Caballero, A., Ferraresi, C.: Rehabilitation robotics and systems. J. Healthc. Eng. 2018, 5370127 (2018)Google Scholar
  21. 21.
    Chocoteco, J., Morales, R., Feliu, V.: Enhancing the trajectory generation of a stair-climbing mobility system. Sensors 17(1), 1–31 (2017)Google Scholar
  22. 22.
    Chocoteco, J., Morales, R., Feliu, V., Sánchez, L.: Trajectory planning for a stair-climbing mobility system using laser distance sensors. IEEE Syst. J. 10(3), 944–956 (2016)Google Scholar
  23. 23.
    Benito-Picazo, J., Domínguez, E., Palomo, E.J., López-Rubio, E., Ortiz-de-Lazcano-Lobato, J.M.: Motion detection with low cost hardware for PTZ cameras. Integr. Comput.-Aided Eng. 26(1), 21–36 (2019)Google Scholar
  24. 24.
    Panduro, R., Oliver, M., Morales, R., González, P., Fernández-Caballero, A.: Motorized multi-camera slider for precise monitoring of physical rehabilitation. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI/IWAAL/AmIHEALTH -2016. LNCS, vol. 10070, pp. 21–27. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48799-1_3Google Scholar
  25. 25.
    Mkhitaryan, A., Burschka, D.: RGB-D sensor data correction and enhancement by introduction of an additional RGB view. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1077–1083 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ramón Panduro
    • 1
  • Eva Segura
    • 2
  • Lidia M. Belmonte
    • 1
    • 2
  • Paulo Novais
    • 3
  • Jesús Benet
    • 2
  • Antonio Fernández-Caballero
    • 1
    • 2
    Email author
  • Rafael Morales
    • 1
    • 2
  1. 1.Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Escuela Técnica Superior de Ingenieros IndustrialesUniversidad de Castilla-La ManchaAlbaceteSpain
  3. 3.Intelligent Systems Lab, Campus of GualtarUniversidade do MinhoBragaPortugal

Personalised recommendations