Midpoint: A Tool to Build Artificial Models of Numerical Cognition

  • Onofrio GigliottaEmail author
  • Michela Ponticorvo
  • Fabrizio Doricchi
  • Orazio Miglino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11486)


The present paper describes a tool developed to model and simulate tasks related to numerical cognition, a very important element of both animal and human cognition. In particular, we describe how this software has been used to study a bias that has been consistently observed in humans, both adults and children, about the calculation of the middle point between two numbers and related with the position of numbers in intervals, called NIPE (number interval position effect). Along with the description of the software and the experimental results about the NIPE effect, some results are reported which show the potential of this approach.


Simulative models Numerical cognition NIPE effect Developmental studies Numerical and Spatial cognition 


  1. 1.
    Spelke, E.S., Kinzler, K.D.: Core knowledge. Dev. Sci. 10(1), 89–96 (2007)CrossRefGoogle Scholar
  2. 2.
    Zorzi, M., Priftis, K., Umiltà, C.: Neglect disrupts the mental number line. Nature 417, 138 (2002)CrossRefGoogle Scholar
  3. 3.
    Chittka, L., Geiger, K.: Can honey bees count landmarks? Anim. Behav. 49(1), 159–164 (1995)CrossRefGoogle Scholar
  4. 4.
    Dehaene, S.: Varieties of numerical abilities. Cognition 44(1), 1–42 (1992)CrossRefGoogle Scholar
  5. 5.
    Dehaene, S., Bossini, S., Giraux, P.: The mental representation of parity and number magnitude. J. Exp. Psychol.: Gener. 122(3), 371–396 (1993)CrossRefGoogle Scholar
  6. 6.
    Dehaene, S., Molko, N., Cohen, L., Wilson, A.J.: Arithmetic and the brain. Curr. Opin. Neurobiol. 14(2), 218–224 (2004)CrossRefGoogle Scholar
  7. 7.
    Aiello, M., Merola, S., Doricchi, F.: Small numbers in the right brain: evidence from patients without and with spatial neglect. Cortex 49(1), 348–351 (2013)CrossRefGoogle Scholar
  8. 8.
    Di Ferdinando, A., Parisi, D., Bartolomeo, P.: Modeling orienting behavior and its disorders with “ecological” neural networks. J. Cogn. Neurosci. 19(6), 1033–1049 (2007)CrossRefGoogle Scholar
  9. 9.
    Doricchi, F., et al.: Spatial orienting biases in the decimal numeral system. Curr. Biol. 19(8), 682–687 (2009)CrossRefGoogle Scholar
  10. 10.
    Gigliotta, O., Bartolomeo, P., Miglino, O.: Approaching neuropsychological tasks through adaptive neurorobots. Connection Sci. 27(2), 153–163 (2015)CrossRefGoogle Scholar
  11. 11.
    Gilmore, C., Attridge, N., Inglis, M.: Measuring the approximate number system. Q. J. Exp. Psychol. 64(11), 2099–2109 (2011)CrossRefGoogle Scholar
  12. 12.
    Halberda, J., Feigenson, L.: Developmental change in the acuity of the “Number Sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev. Psychol. 44(5), 1457 (2008)CrossRefGoogle Scholar
  13. 13.
    Matsuzawa, T.: Use of numbers by a chimpanzee. Nature 315(6014), 57–59 (1985)CrossRefGoogle Scholar
  14. 14.
    Miglino, O., Ponticorvo, M.: Place cognition as an example of situated cognition: a study with evolved agents. Cogn. Process. 10(2), 250–252 (2009)CrossRefGoogle Scholar
  15. 15.
    Miglino, O., Ponticorvo, M.: Exploring the roots of (spatial) cognition in artificial and natural organisms. Evol. Robot. Approach Horiz. Evol. Robot. 93–123 (2014)Google Scholar
  16. 16.
    Miglino, O., Ponticorvo, M., Bartolomeo, P.: Place cognition and active perception: a study with evolved robots. Connection Sci. 21(1), 3–14 (2009)CrossRefGoogle Scholar
  17. 17.
    Nieder, A., Miller, E.K.: Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37(1), 149–157 (2003)CrossRefGoogle Scholar
  18. 18.
    Ponticorvo, M., Rotondaro, F., Doricchi, F., Miglino, O.: A neural model of number interval position effect (NIPE) in children. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 9–18. Springer, Cham (2015). Scholar
  19. 19.
    Ponticorvo, M., Miglino, O.: Encoding geometric and non-geometric information: a study with evolved agents. Anim. Cogn. 13(1), 157 (2010)CrossRefGoogle Scholar
  20. 20.
    Ponticorvo, M., Walker, R., Miglino, O.: Evolutionary robotics as a tool to investigate spatial cognition in artificial and natural systems. In: Artificial Cognition Systems, pp. 210–237 (2007)CrossRefGoogle Scholar
  21. 21.
    Reuter-Lorenz, P.A., Posner, M.I.: Components of neglect from right-hemisphere damage: an analysis of line bisection. Neuropsychologia 28(4), 327–333 (1990)CrossRefGoogle Scholar
  22. 22.
    Rotondaro, F., Gazzellini, S., Peris, M., Doricchi, F.: The mental number line in children: number interval bisection and number to position performance. Poster presented at the European Workshop Cognitive Neuroscience 2012, Bressanone, Italy (2012)Google Scholar
  23. 23.
    Stoianov, I., Zorzi, M.: Emergence of a ‘visual number sense’ in hierarchical generative models. Nat. Neurosci. 15(2), 194–196 (2012)CrossRefGoogle Scholar
  24. 24.
    Urbanski, M., et al.: Negligence spatiale unilaterale: une consequence dramatique mais souvent negligee des lesions de l’hemisphere droit. Revue Neurologique 163(3), 305–322 (2007)CrossRefGoogle Scholar
  25. 25.
    Rotondaro, F., et al.: The number interval position effect (NIPE) in the mental bisection of numerical intervals might reflect the influence of the decimal-number system on the Gaussian representations of numerosities: a combined developmental and computational-modeling study. Cortex (2018)Google Scholar
  26. 26.
    Doricchi, F., et al.: Spatial orienting biases in the decimal numeral system. Curr. Biol. 19(8), 682–7 (2009)CrossRefGoogle Scholar
  27. 27.
    Geary, D., Berch, D.B., Mann, K. (eds.): Evolutionary Origins and Early Development of Number Processing. Academic Press, Cambridge (2015)Google Scholar
  28. 28.
    Rencher, A.C.: Methods of Multivariate Analysis. Wiley, Hoboken (2002)CrossRefGoogle Scholar
  29. 29.
    Piazza, M., Izard, V., Pinel, P., Bihan, D.L., Dehaene, S.: Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44(3), 547–555 (2004)CrossRefGoogle Scholar
  30. 30.
    Broz, F., et al.: The ITALK project: a developmental robotics approach to the study of individual, social, and linguistic learning. Top. Cogn. Sci. 6(3), 534–544 (2014)CrossRefGoogle Scholar
  31. 31.
    Gigliotta, O., Malkinson, T.S., Miglino, O., Bartolomeo, P.: Pseudoneglect in visual search: behavioral evidence and connectional constraints in simulated neural circuitry. eNeuro 4(6) (2017)CrossRefGoogle Scholar
  32. 32.
    Pacella, D., Ponticorvo, M., Gigliotta, O., Miglino, O.: Basic emotions and adaptation. A computational and evolutionary model. PLOS ONE 12(11), 1–20 (2017)CrossRefGoogle Scholar
  33. 33.
    Pagliuca, P., Milano, N., Nolfi, S.: Maximizing adaptive power in neuroevolution. PLOS ONE 13(7), e0198788 (2018)CrossRefGoogle Scholar
  34. 34.
    Cerrato, A., Ponticorvo, M.: Enhancing neuropsychological testing with gamification and tangible interfaces: the baking tray task. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10338, pp. 147–156. Springer, Cham (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Onofrio Gigliotta
    • 1
    Email author
  • Michela Ponticorvo
    • 1
  • Fabrizio Doricchi
    • 3
  • Orazio Miglino
    • 1
    • 2
  1. 1.Department of Humanistic StudiesUniversity of Naples “Federico II”NaplesItaly
  2. 2.Institute of Cognitive Sciences and Technologies, National Research CouncilRomeItaly
  3. 3.University of Rome “Sapienza”RomeItaly

Personalised recommendations