Skip to main content

Spatiotemporal Analysis and Data Mining of the 2014–2016 Ebola Virus Disease Outbreak in West Africa

  • Chapter
  • First Online:
Geospatial Technologies for Urban Health

Part of the book series: Global Perspectives on Health Geography ((GPHG))

Abstract

This study investigates the spatiotemporal pattern of the 2014 Ebola virus disease (EVD) epidemic in the most heavily affected countries in West Africa and also mines the spatial associations between such pattern and other geographically distributed factors. Utilizing the publicly available open-source data, this study demonstrates a research design that integrates various geospatial data processing, analysis, and data-mining techniques to achieve the research objectives. For the 2014 EVD epidemic, spatiotemporal patterns were analyzed and visualized. Fine-grained population data were obtained through a population interpolation method to conduct healthcare accessibility analysis. Finally, associations between the spatiotemporal patterns of the incidences and healthcare accessibility as well as other factors were examined. The results suggest that (1) poor accessibility to healthcare facilities and EVD clusters are identified in many urban areas as well as some remote areas; and (2) EVD cases were more likely to be found in border areas of these countries where accessibility to healthcare facilities is poorer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S. S. U., et al. (2010). The space--time clustering of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in Bangladesh. Epidemiology & Infection, 138(6), 843–852.

    Article  Google Scholar 

  • Baize, S., et al. (2014). Emergence of Zaire Ebola virus disease in Guinea—Preliminary report. The New England Journal of Medicine, 371(15), 1418–1425.

    Google Scholar 

  • Banu, S., et al. (2012). Space-time clusters of dengue fever in Bangladesh. Tropical Medicine and International Health, 17(9), 1086–1091.

    Article  Google Scholar 

  • Bawo, L., et al. (2015). Elimination of Ebola virus transmission in Liberia—September 3, 2015. Morbidity and Mortality Weekly Report, 64, 979–980. Available at: http://www.cdc.gov/mmwr/pdf/wk/mm6435.pdf. Accessed 11 Sept 2015.

    Article  Google Scholar 

  • Carroll, M.W., et al. (2015). Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 524(7563), 97.

    Google Scholar 

  • Casas, I., Delmelle, E., & Delmelle, E. C. (2017). Potential versus revealed access to care during a dengue fever outbreak. Journal of Transport and Health, 4, 18–29. https://doi.org/10.1016/j.jth.2016.08.001.

    Article  Google Scholar 

  • Centers for Disease Control and Prevention. (2016). Outbreaks chronology: Ebola virus disease. Available at: http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html.

  • Cheng, T., & Wicks, T. (2014). Event detection using Twitter: A spatio-temporal approach. PloS One, 9(6), e97807.

    Article  Google Scholar 

  • Cheng, T., & Williams, D. (2012). Space-time analysis of crime patterns in central London. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B2(September), 47–52.

    Article  Google Scholar 

  • Chowell, G., & Nishiura, H. (2015). Characterizing the transmission dynamics and control of Ebola virus disease. PLoS Biology, 13(1), 1–9.

    Article  Google Scholar 

  • Chu, H. J., et al. (2016). Minimizing spatial variability of healthcare spatial accessibility—The case of a dengue fever outbreak. International Journal of Environmental Research and Public Health, 13(12), 1235.

    Article  Google Scholar 

  • de Melo, D. P. O., Scherrer, L. R., & Eiras, Á. E. (2012). Dengue fever occurrence and vector detection by larval survey, ovitrap and mosquiTRAP: A space-time clusters analysis. PLoS One, 7(7), e42125.

    Article  Google Scholar 

  • D’Silva, J. P., & Eisenberg, M. C. (2017). Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology, 428, 65–75.

    Google Scholar 

  • Desjardins, M. R., et al. (2018). Space-time clusters and co-occurrence of chikungunya and dengue fever in Colombia from 2015 to 2016. Acta Tropica, 185(April), 77–85. https://doi.org/10.1016/j.actatropica.2018.04.023.

    Article  Google Scholar 

  • Eisen, L., & Lozano-Fuentes, S. (2009). Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. PLoS Neglected Tropical Diseases, 3(4), 1–7.

    Article  Google Scholar 

  • Ganguly, S. (2014). Ebola hemorrhagic fever: A review on global facts, concepts and public health issues. World Journal of Pharmaceutical Research, 3(9), 401–404.

    Google Scholar 

  • Gatherer, D. (2014). The 2014 Ebola virus disease outbreak in West Africa. Journal of General Virology, 95(Part 8), 1619–1624.

    Article  Google Scholar 

  • Gaudart, J., et al. (2006). Space-time clustering of childhood malaria at the household level: A dynamic cohort in a Mali village. BMC Public Health, 6(1), 286.

    Article  Google Scholar 

  • Green, A. (2014). Ebola emergency meeting establishes new control centre. The Lancet, 384(9938), 118. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0140673614611478.

    Article  Google Scholar 

  • Guagliardo, M. F. (2004). Spatial accessibility of primary care: Concepts, methods and challenges. International Journal of Health Geographics, 3(1), 3.

    Article  Google Scholar 

  • Hadley, J., & Cunningham, P. (2004). Availability of safety net providers and access to care of uninsured persons. Health Services Research, 39(5), 1527–1546.

    Article  Google Scholar 

  • Joseph, A. E., & Bantock, P. R. (1982). Measuring potential physical accessibility to general practitioners in rural areas: A method and case study. Social Science & Medicine, 16(1), 85–90.

    Article  Google Scholar 

  • Kim, H., & Yao, X. (2010). Pycnophylactic interpolation revisited: Integration with the dasymetric-mapping method. International Journal of Remote Sensing, 31(21), 5657–5671.

    Article  Google Scholar 

  • Kiskowski, M. (2014). Description of the early growth dynamics of 2014 West Africa Ebola epidemic. arXiv preprint arXiv:1410.5409.

    Google Scholar 

  • Koperski, K., & Han, J. (1995). Discovery of spatial association rules in geographic information databases. In International Symposium on Spatial Databases (pp. 47–66). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Kramer, A. M., et al. (2016). Spatial spread of the West Africa Ebola epidemic. Dryad Digital Repository, 3, 160294.

    Google Scholar 

  • Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics – Theory and Methods, 26(6), 1481–1496.

    Article  Google Scholar 

  • Kulldorff, M., et al. (2004). Benchmark data and power calculations for evaluating disease outbreak detection methods. Morbidity and Mortality Weekly Report, 53, 144–151.

    Google Scholar 

  • Kulldorff, M., et al. (2007). Multivariate scan statistics for disease surveillance. Statistics in Medicine, 26(8), 1824–1833.

    Article  Google Scholar 

  • Leibovici, D., et al. (2007). Extracting Dynamics of Multiple Indicators for Spatial recognition of Ecoclimatic zones in Circum-Saharan Africa. GISRUK 2007, 114.

    Google Scholar 

  • Lian, M., et al. (2007). Using geographic information systems and spatial and space-time scan statistics for a population-based risk analysis of the 2002 equine West Nile epidemic in six contiguous regions of Texas. International Journal of Health Geographics, 10, 1–10.

    Google Scholar 

  • Luo, W., & Wang, F. (2003). Measures of spatial accessibility to health care in a GIS environment: Synthesis and a case study in the Chicago region. Environment and Planning B: Planning and Design, 30(6), 865–884.

    Article  Google Scholar 

  • Luo, W., & Qi, Y. (2009). An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health & Place, 15(4), 1100–1107.

    Google Scholar 

  • McGrail, M. R., & Humphreys, J. S. (2014). Measuring spatial accessibility to primary health care services: Utilising dynamic catchment sizes. Applied Geography, 54, 182–188. https://doi.org/10.1016/j.apgeog.2014.08.005.

    Article  Google Scholar 

  • Mcgrail, M. R., et al. (2015). Spatial access disparities to primary health care in rural and remote Australia. Geospatial Health, 10, 358.

    Article  Google Scholar 

  • Meliker, J. R., & Sloan, C. D. (2011). Spatio-temporal epidemiology: Principles and opportunities. Spatial and Spatio-temporal Epidemiology, 2(1), 1–9.

    Article  Google Scholar 

  • Mulatti, P., et al. (2010). Evaluation of interventions and vaccination strategies for low pathogenicity avian influenza: spatial and space–time analyses and quantification of the spread of infection. Epidemiology & Infection, 138(6), 813–824.

    Article  Google Scholar 

  • Nakaya, T., & Yano, K. (2010). Visualising crime clusters in a space-time cube: An exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Transactions in GIS, 14(3), 223–239.

    Article  Google Scholar 

  • O’Neill, L. (2003). Estimating out-of-hospital mortality due to myocardial infarction. Health Care Management Science, 6(3), 147–154.

    Article  Google Scholar 

  • Openshaw, S., et al. (1987). A mark 1 geographical analysis machine for the automated analysis of point data sets. International Journal of Geographical Information System, 1(4), 335–358.

    Article  Google Scholar 

  • Radke, J., & Mu, L. (2000). Spatial decompositions, modeling and mapping service regions to predict access to social programs. Geographic Information Sciences, 6(2), 105–112.

    Google Scholar 

  • Robertson, C., et al. (2010). Review of methods for space-time disease surveillance. Spatial and Spatio-temporal Epidemiology, 1(2–3), 105–116. https://doi.org/10.1016/j.sste.2009.12.001.

    Article  Google Scholar 

  • Shaman, J., Yang, W., & Kandula, S. (2014). Inference and forecast of the current West African Ebola outbreak in Guinea, Sierra Leone and Liberia. PLoS Currents, 6. https://doi.org/10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6.

  • Singh, S. K., & Ruzek, D. (2013). Viral hemorrhagic fevers. London: CRC Press. Available at: https://books.google.com/books?id=WzzOBQAAQBAJ.

    Google Scholar 

  • Talen, E., & Anselin, L. (1998). Assessing spatial equity: An evaluation of measures of accessibility to public playgrounds. Environment and Planning A, 30(4), 595–613.

    Article  Google Scholar 

  • Tango, T., Takahashi, K., & Kohriyama, K. (2011). A Space-Time Scan Statistic for Detecting Emerging Outbreaks. Biometrics, 67(1), 106–115.

    Google Scholar 

  • WHO Ebola Response Team. (2014). Ebola virus disease in West Africa—The first 9 months of the epidemic and forward projections. New England Journal of Medicine, 371(16), 1481–1495. Available at: http://www.nejm.org/doi/abs/10.1056/NEJMoa1411100. Accessed 25 Sept 2016.

    Article  Google Scholar 

  • Yang, W., et al. (2015). Transmission network of the 2014-2015 Ebola epidemic in Sierra Leone. Journal of the Royal Society, Interface/the Royal Society, 12(112), 204–211. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26559683, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4685836.

    Article  Google Scholar 

  • Zandbergen, P. A., & Ignizio, D. A. (2010). Comparison of dasymetric mapping techniques for small-area population estimates. Cartography and Geographic Information Science, 37(3), 199–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinjin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fan, Q., Yao, X.A., Dang, A. (2020). Spatiotemporal Analysis and Data Mining of the 2014–2016 Ebola Virus Disease Outbreak in West Africa. In: Lu, Y., Delmelle, E. (eds) Geospatial Technologies for Urban Health. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-19573-1_10

Download citation

Publish with us

Policies and ethics