Skip to main content

The Role of Th17 Cells in Immunopathogenesis of Neuroinflammatory Disorders

  • Chapter
  • First Online:

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Neuroinflammation, characterized by infiltration of immune cells such as T lymphocyte populations and other immune cells, is a prominent pathological feature of neurodegenerative disorders. However, consequence of neural injury during this inflammation is still unclear. Traditionally, CD4+ T helper (Th) cells have been categorized into various subsets. T helper 17 (Th17) cells are a Th subpopulation that plays an important role in the pathogenesis of neuroinflammatory diseases. The chronic forms of inflammatory milieu induce the Th17 cell polarization from their precursors and then secretion of pro-inflammatory cytokines such as interleukin-17 (IL-17), IL-21, IL-22, IL-23, and IL-6. Both interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) from Th17 cells exacerbate the inflammation. Migrating autoreactive Th17 cells into the nervous system can elicit neuronal apoptosis directly via Fas/FasL interaction. Th17 cells increase migration of other immune cells such as neutrophils into the inflamed CNS through the blood-brain barrier (BBB) and trigger the inflammatory reactions that occasionally lead to irreversible neuronal damages. Therefore, it is not surprising that these cells are implicated in a wide range of neuroinflammatory and autoimmune disorders including multiple sclerosis (MS), Alzheimer disease (AD), Parkinson disease (PD), schizophrenia, and many other neuroimmune disorders. In this chapter, we describe the immunopathogenesis of Th17 cells in neuroinflammations and discuss the neuronal injuries induced by Th17 cells and other Th17-related immune cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cosmi L, et al. T helper cells plasticity in inflammation. Cytometry A. 2014;85(1):36–42.

    PubMed  Google Scholar 

  3. Raphael I, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74(1):5–17.

    CAS  PubMed  Google Scholar 

  4. Infante-Duarte C, et al. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol. 2000;165(11):6107–15.

    CAS  PubMed  Google Scholar 

  5. Annunziato F, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204(8):1849–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci. 2013;333(1–2):76–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;79:408–16.

    CAS  Google Scholar 

  8. Moseley T, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14(2):155–74.

    CAS  PubMed  Google Scholar 

  9. Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol. 2015;129(5):625–37.

    CAS  PubMed  Google Scholar 

  10. Pourgholaminejad A, et al. Is TGFβ as an anti-inflammatory cytokine required for differentiation of inflammatory TH17 cells? J Immunotoxicol. 2016;13(6):775–83.

    CAS  PubMed  Google Scholar 

  11. Ghoreschi K, et al. Generation of pathogenic T H 17 cells in the absence of TGF-β signalling. Nature. 2010;467(7318):967.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Unutmaz D. RORC2: the master of human Th17 cell programming. Eur J Immunol. 2009;39(6):1452–5.

    CAS  PubMed  Google Scholar 

  13. Boniface K, et al. Human Th17 cells comprise heterogeneous subsets including IFN-γ–producing cells with distinct properties from the Th1 lineage. J Immunol. 2010;185:679–87. p. ji_1000366

    CAS  PubMed  Google Scholar 

  14. Chen Z, et al. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 2007;56(9):2936–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Volpe E, et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human T H-17 responses. Nat Immunol. 2008;9(6):650.

    CAS  PubMed  Google Scholar 

  16. Frohman EM, Racke MK, Raine CS. Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–55.

    CAS  PubMed  Google Scholar 

  17. Lucchinetti C, Rodriguez M, Weinshenker B. Multiple sclerosis. N Engl J Med. 2000;343:938–52.

    PubMed  Google Scholar 

  18. Trapp BD, Nave K-A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69.

    CAS  PubMed  Google Scholar 

  19. Denic A, Wootla B, Rodriguez M. CD8+ T cells in multiple sclerosis. Expert Opin Ther Targets. 2013;17(9):1053–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2010;221(1):7–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. El-behi M, Rostami A, Ciric B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 2010;5(2):189–97.

    PubMed  PubMed Central  Google Scholar 

  22. Smith AW, et al. Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J Neuroimmunol. 2011;232(1):179–85.

    CAS  PubMed  Google Scholar 

  23. Brucklacher-Waldert V, et al. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain. 2009;132(12):3329–41.

    PubMed  Google Scholar 

  24. Reboldi A, et al. CC chemokine receptor 6–regulated entry of T H-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514.

    CAS  PubMed  Google Scholar 

  25. Rothhammer V, et al. Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. J Exp Med. 2011;208:2465–76. https://doi.org/10.1084/jem.20110434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matusevicius D, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999;5(2):101–4.

    CAS  PubMed  Google Scholar 

  27. Kebir H, et al. Preferential recruitment of interferon-γ–expressing TH17 cells in multiple sclerosis. Ann Neurol. 2009;66(3):390–402.

    CAS  PubMed  Google Scholar 

  28. Fletcher J, et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Severson C, Hafler DA. T-cells in multiple sclerosis. Results Probl Cell Differ. 2009;51:75–98.

    Google Scholar 

  30. Carbajal KS, et al. Th cell diversity in experimental autoimmune encephalomyelitis and multiple sclerosis. J Immunol. 2015;195(6):2552–9.

    CAS  PubMed  Google Scholar 

  31. Gross CC, et al. Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult Scler J. 2017;23:1025–30. p. 1352458516662726

    CAS  Google Scholar 

  32. Langrish CL, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lohoff M, et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci. 2002;99(18):11808–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang C, et al. Inhibition of interferon regulatory factor 4 suppresses Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Scand J Immunol. 2015;82(4):345–51.

    CAS  PubMed  Google Scholar 

  35. Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1–13.

    CAS  PubMed  Google Scholar 

  36. Hofstetter H, Gold R, Hartung H-P. Th17 cells in MS and experimental autoimmune encephalomyelitis. Int MS J. 2009;16(1):12–9.

    PubMed  Google Scholar 

  37. McGinley AM, et al. Th17cells, gammadelta T cells and their interplay in EAE and multiple sclerosis. J Autoimmun. 2018;87:97–108.

    CAS  Google Scholar 

  38. Cosorich I, et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv. 2017;3(7):e1700492.

    PubMed  PubMed Central  Google Scholar 

  39. Hao J, et al. Central nervous system (CNS)–resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J Exp Med. 2010;207(9):1907–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Heremans H, et al. Chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice: enhancement by monoclonal antibodies against interferon-γ. Eur J Immunol. 1996;26(10):2393–8.

    CAS  PubMed  Google Scholar 

  41. Ferber IA, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol. 1996;156(1):5–7.

    CAS  PubMed  Google Scholar 

  42. Wing AC, et al. Interleukin-17-and interleukin-22-secreting myelin-specific CD4+ T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients. Immunology. 2016;147(2):212–20.

    CAS  PubMed  Google Scholar 

  43. Acosta-Rodriguez EV, et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.

    CAS  PubMed  Google Scholar 

  44. Lee YK, et al. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21(3):274–80.

    CAS  PubMed  Google Scholar 

  45. Abromson-Leeman S, Bronson RT, Dorf ME. Encephalitogenic T cells that stably express both T-bet and RORγt consistently produce IFNγ but have a spectrum of IL-17 profiles. J Neuroimmunol. 2009;215(1):10–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee YK, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30(1):92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fleisher TA, et al. Clinical immunology, principles and practice (Expert Consult-Online and Print), 4: Clinical immunology. Elsevier Health Sciences. Mosby: St. Louis.; 2013.

    Google Scholar 

  48. Kroenke MA, et al. IL-12–and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med. 2008;205(7):1535–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Korn T, et al. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    CAS  PubMed  Google Scholar 

  50. Park H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Komiyama Y, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177(1):566–73.

    CAS  PubMed  Google Scholar 

  52. Witowski J, et al. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GROα chemokine from mesothelial cells. J Immunol. 2000;165(10):5814–21.

    CAS  PubMed  Google Scholar 

  53. Huppert J, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J. 2010;24(4):1023–34.

    CAS  PubMed  Google Scholar 

  54. Strachan-Whaley M, Rivest S, Yong VW. Interactions between microglia and T cells in multiple sclerosis pathobiology. J Interf Cytokine Res. 2014;34(8):615–22.

    CAS  Google Scholar 

  55. Lucchinetti CF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365(23):2188–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mahad DJ, Ransohoff RM. The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol. 2003;15:23–32. Elsevier

    CAS  PubMed  Google Scholar 

  57. Almolda B, Gonzalez B, Castellano B. Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Front Biosci. 2011;16:1157–71.

    CAS  Google Scholar 

  58. Kawanokuchi J, et al. Production and functions of IL-17 in microglia. J Neuroimmunol. 2008;194(1–2):54–61.

    CAS  PubMed  Google Scholar 

  59. Medana IM, et al. MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur J Immunol. 2000;30(12):3623–33.

    CAS  PubMed  Google Scholar 

  60. Liblau RS, et al. Neurons as targets for T cells in the nervous system. Trends Neurosci. 2013;36(6):315–24.

    CAS  PubMed  Google Scholar 

  61. Yshii L, et al. Neurons and T cells: understanding this interaction for inflammatory neurological diseases. Eur J Immunol. 2015;45(10):2712–20.

    CAS  PubMed  Google Scholar 

  62. Kang Z, et al. Act1 mediates IL-17–induced EAE pathogenesis selectively in NG2+ glial cells. Nat Neurosci. 2013;16(10):1401.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Paintlia MK, et al. Synergistic activity of interleukin-17 and tumor necrosis factor-α enhances oxidative stress-mediated oligodendrocyte apoptosis. J Neurochem. 2011;116(4):508–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Poh Loh K, et al. Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res. 2006;3(4):327–37.

    Google Scholar 

  65. Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79(1–2):157–65.

    CAS  PubMed  Google Scholar 

  66. van der Goes A, et al. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J Neuroimmunol. 1998;92(1–2):67–75.

    PubMed  Google Scholar 

  67. Ortiz GG, et al. Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol. 2013;2013:1.

    Google Scholar 

  68. Haak S, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest. 2009;119(1):61–9.

    CAS  PubMed  Google Scholar 

  69. Almolda B, et al. Increase in Th17 and T-reg lymphocytes and decrease of IL22 correlate with the recovery phase of acute EAE in rat. PLoS One. 2011;6(11):e27473.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou C, et al. Comment and reply on: emerging role of Th22 and IL-22 in multiple sclerosis, an autoimmune disease in the central nervous system. Expert Opin Ther Targets. 2013;17(11):1381–2.

    PubMed  Google Scholar 

  71. Zhang N, Pan H-F, Ye D-Q. Th22 in inflammatory and autoimmune disease: prospects for therapeutic intervention. Mol Cell Biochem. 2011;353(1–2):41–6.

    CAS  PubMed  Google Scholar 

  72. Kebir H, et al. Human T H 17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13(10):1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol. 2006;176(12):7768–74.

    CAS  PubMed  Google Scholar 

  74. Hirota K, et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. 2011;12(3):255.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McGeachy MJ, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nat Immunol. 2009;10(3):314.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen Y, et al. Anti–IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest. 2006;116(5):1317–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. El-Behi M, et al. The encephalitogenicity of T H 17 cells is dependent on IL-1-and IL-23-induced production of the cytokine GM-CSF. Nat Immunol. 2011;12(6):568.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Codarri L, et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011;12(6):560.

    CAS  PubMed  Google Scholar 

  79. Croxford AL, et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity. 2015;43(3):502–14.

    CAS  PubMed  Google Scholar 

  80. Stromnes IM, et al. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat Med. 2008;14(3):337–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Durelli L, et al. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-β. Ann Neurol. 2009;65(5):499–509.

    CAS  PubMed  Google Scholar 

  82. Kreymborg K, et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol. 2007;179(12):8098–104.

    CAS  PubMed  Google Scholar 

  83. Sweeney CM, et al. IL-27 mediates the response to IFN-β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun. 2011;25(6):1170–81.

    CAS  PubMed  Google Scholar 

  84. Ramgolam VS, et al. IFN-β inhibits human Th17 cell differentiation. J Immunol. 2009;183:5418–27. p. jimmunol. 0803227

    CAS  PubMed  Google Scholar 

  85. Mehling M, et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology. 2010;75(5):403–10.

    CAS  PubMed  Google Scholar 

  86. Miossec P, Kolls JK. Targeting IL-17 and T H 17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763.

    CAS  PubMed  Google Scholar 

  87. Bartlett HS, Million RP. Targeting the IL-17–T H 17 pathway. Nat Rev Drug Discov. 2015;14:11–12.

    Google Scholar 

  88. Constantinescu CS, et al. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e117.

    PubMed  PubMed Central  Google Scholar 

  89. Segal BM, et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 2008;7(9):796–804.

    CAS  PubMed  Google Scholar 

  90. Vollmer TL, et al. A phase 2, 24-week, randomized, placebo-controlled, double-blind study examining the efficacy and safety of an anti-interleukin-12 and-23 monoclonal antibody in patients with relapsing–remitting or secondary progressive multiple sclerosis. Mult Scler J. 2011;17(2):181–91.

    CAS  Google Scholar 

  91. Volpe E, Battistini L, Borsellino G. Advances in T helper 17 cell biology: pathogenic role and potential therapy in multiple sclerosis. Mediat Inflamm. 2015;2015:475158.

    Google Scholar 

  92. Huh JR, et al. Digoxin and its derivatives suppress T H 17 cell differentiation by antagonizing RORγt activity. Nature. 2011;472(7344):486.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu T, et al. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein. J Biol Chem. 2011;286(26):22707–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Karantzoulis S, J.E. Galvin. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother. 2014.

    Google Scholar 

  95. Wray S, Fox NC. Stem cell therapy for Alzheimer’s disease: hope or hype? Lancet Neurol. 2016;15(2):133–5.

    PubMed  Google Scholar 

  96. Gouras GK, Olsson TT, Hansson O. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):3–11.

    CAS  PubMed  Google Scholar 

  97. Lyons B, et al. Amyloid plaque in the human brain can decompose from Aβ (1-40/1-42) by spontaneous nonenzymatic processes. Anal Chem. 2016;88(5):2675–84.

    CAS  PubMed  Google Scholar 

  98. Gu L, et al. A new structural model of Alzheimer’s Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling. J Struct Biol. 2016;194(1):61–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rudinskiy N, et al. Amyloid-beta oligomerization is associated with the generation of a typical peptide fragment fingerprint. Alzheimers Dement. 2016;12:996.

    PubMed  Google Scholar 

  100. Mujahid M. Alzheimer disease: a review. World J Pharm Pharm Sci. 2016;5(6):649–66.

    Google Scholar 

  101. Wang W-Y, et al. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136.

    PubMed  PubMed Central  Google Scholar 

  102. Tahmasebinia F, Emadi S. Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron. Biometals. 2017;30(2):285–93.

    CAS  PubMed  Google Scholar 

  103. Czirr E, Wyss-Coray T. The immunology of neurodegeneration. J Clin Invest. 2012;122(4):1156–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fehervari Z. Lymphocytes in Alzheimer’s disease. Nat Immunol. 2016;17(4):355.

    Google Scholar 

  105. Xin N, et al. Exploring the role of interleukin-22 in neurological and autoimmune disorders. Int Immunopharmacol. 2015;28(2):1076–83.

    CAS  PubMed  Google Scholar 

  106. Niranjan R. Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol Neurobiol. 2013;48(3):412–28.

    CAS  PubMed  Google Scholar 

  107. Myhre O, et al. Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxidative Med Cell Longev. 2013;2013:1.

    Google Scholar 

  108. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201.

    PubMed  Google Scholar 

  109. Agnes PK, Christiane S, Peter DB. T-cells show increased production of cytokines and activation markers in Alzheimer’s disease. Brain Disord Ther. 2013;3(1):3–112.

    Google Scholar 

  110. Zhang J, et al. Th17 cell-mediated Neuroinflammation is involved in neurodegeneration of Aβ 1-42-induced Alzheimer’s disease model rats. PLoS One. 2013;8(10):e75786.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. McQuillan K, Lynch MA, Mills KH. Activation of mixed glia by Aβ-specific Th1 and Th17 cells and its regulation by Th2 cells. Brain Behav Immun. 2010;24(4):598–607.

    CAS  PubMed  Google Scholar 

  112. Tzartos JS, et al. IL-21 and IL-21 receptor expression in lymphocytes and neurons in multiple sclerosis brain. Am J Pathol. 2011;178(2):794–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kebir H, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13(10):1173–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen J-M, et al. Increased serum levels of interleukin-18,-23 and-17 in chinese patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2014;38(5–6):321–9.

    CAS  PubMed  Google Scholar 

  115. Jin J-J, et al. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation. 2008;5(1):1.

    Google Scholar 

  116. Swardfager W, et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68(10):930–41.

    CAS  PubMed  Google Scholar 

  117. Grammas P, Ovase R. Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging. 2001;22(6):837–42.

    CAS  PubMed  Google Scholar 

  118. Kothur K, et al. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine. 2016;77:227–37.

    PubMed  Google Scholar 

  119. Zhang Y-Y, et al. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer’s disease. Clin Interv Aging. 2013;8:103–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang Y, et al. Matrine improves cognitive impairment and modulates the balance of Th17/Treg cytokines in a rat model of Aβ1-42-induced Alzheimer’s disease. Cent Eur J Immunol. 2016;40(4):411.

    PubMed Central  Google Scholar 

  121. Saresella M, et al. Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav Immun. 2011;25(3):539–47.

    CAS  PubMed  Google Scholar 

  122. Giuliani F, et al. Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol. 2003;171(1):368–79.

    CAS  PubMed  Google Scholar 

  123. Marciani DJ. Alzheimer’s disease vaccine development: a new strategy focusing on immune modulation. J Neuroimmunol. 2015;287:54–63.

    CAS  PubMed  Google Scholar 

  124. Delenclos M, et al. Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord. 2016;22:S106–10.

    PubMed  Google Scholar 

  125. Ito H. Symptoms and signs of Parkinson’s disease and other movement disorders. In: Deep brain stimulation for neurological disorders. Cham: Springer; 2015. p. 21–37.

    Google Scholar 

  126. Williams-Gray CH, et al. Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov Disord. 2016;31:995.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schlachetzki JC, Winkler J. The innate immune system in Parkinson’s disease: a novel target promoting endogenous neuroregeneration. Neural Regen Res. 2015;10(5):704.

    PubMed  PubMed Central  Google Scholar 

  128. Power JH, Barnes OL, Chegini F. Lewy bodies and the mechanisms of neuronal cell death in Parkinson’s disease and dementia with Lewy bodies. Brain Pathol. 2017;27:3–12.

    CAS  PubMed  Google Scholar 

  129. Allen Reish HE, Standaert DG. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J Park Dis. 2015;5(1):1–19.

    CAS  Google Scholar 

  130. Barrett PJ, Greenamyre JT. Post-translational modification of α-synuclein in Parkinson’s disease. Brain Res. 2015;1628:247–53.

    CAS  PubMed  Google Scholar 

  131. Harms AS, et al. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci. 2013;33(23):9592–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Perez A, Guan L, Sutherland K. Immune system and Parkinson’s disease. Arch Med. 2016;8:2.

    Google Scholar 

  133. Benner EJ, et al. Nitrated α–Synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One. 2008;3(1):e1376.

    PubMed  PubMed Central  Google Scholar 

  134. Brochard V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119(1):182–92.

    CAS  PubMed  Google Scholar 

  135. Appel SH. CD4+ T cells mediate cytotoxicity in neurodegenerative diseases. J Clin Invest. 2009;119(1):13–5.

    CAS  PubMed  Google Scholar 

  136. Hu W-C. Parkinson disease is a TH17 dominant autoimmune disorder against accumulated alpha-synuclein. arXiv preprint arXiv. 2013;1403:3256.

    Google Scholar 

  137. Reynolds AD, et al. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol. 2010;184(5):2261–71.

    CAS  PubMed  Google Scholar 

  138. Peng Y-P, et al. Treg/Th17 imbalance-mediated neuroinflammation is involved in pathogenesis of Parkinson’s disease. 2013.

    Google Scholar 

  139. Storelli E, et al. Do Th17 lymphocytes and IL-17 contribute to Parkinson’s disease? A systematic review of available evidence. Front Neurol.

    Google Scholar 

  140. Appel SH, Beers DR, Henkel JS. T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol. 2010;31(1):7–17.

    CAS  PubMed  Google Scholar 

  141. Niwa F, et al. Effects of peripheral lymphocyte subpopulations and the clinical correlation with Parkinson’s disease. Geriatr Gerontol Int. 2012;12(1):102–7.

    PubMed  Google Scholar 

  142. Wahner AD, et al. Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol. 2007;64(6):836–40.

    PubMed  Google Scholar 

  143. Blum-Degena D, et al. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202(1):17–20.

    Google Scholar 

  144. Griffin WST, et al. Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation. 2006;3(1):1.

    Google Scholar 

  145. Asea A, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435–42.

    CAS  PubMed  Google Scholar 

  146. Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008;38(10):2636–49.

    CAS  PubMed  Google Scholar 

  147. Gatto EM, et al. Neutrophil function, nitric oxide, and blood oxidative stress in Parkinson’s disease. Mov Disord. 1996;11(3):261–7.

    CAS  PubMed  Google Scholar 

  148. Ripke S, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421.

    CAS  PubMed Central  Google Scholar 

  149. Nasyrova RF, et al. Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol. 2015;6:139.

    PubMed  PubMed Central  Google Scholar 

  150. Debnath M. Adaptive immunity in schizophrenia: functional implications of t cells in the etiology, course and treatment. J Neuroimmune Pharmacol. 2015;10(4):610–9.

    PubMed  Google Scholar 

  151. Andreassen OA, et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol Psychiatry. 2015;20(2):207–14.

    CAS  PubMed  Google Scholar 

  152. Hyde TM, Bharadwaj RA. Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry. 2015;172(11):1052.

    PubMed  Google Scholar 

  153. Patterson PH. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res. 2009;204(2):313–21.

    CAS  PubMed  Google Scholar 

  154. Avramopoulos D, et al. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One. 2015;10(3):e0116696.

    PubMed  PubMed Central  Google Scholar 

  155. Na K-S, Jung H-Y, Kim Y-K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:277–86.

    CAS  Google Scholar 

  156. Khandaker GM, Dantzer R. Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology. 2016;233(9):1559–73.

    CAS  PubMed  Google Scholar 

  157. Van Kesteren C, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7(3):e1075.

    PubMed  PubMed Central  Google Scholar 

  158. Meyer U. Developmental immune activation models with relevance to schizophrenia. In: Immunology and psychiatry. Cham: Springer; 2015. p. 15–32.

    Google Scholar 

  159. Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res. 2015;161(1):102–12.

    PubMed  Google Scholar 

  160. Fillman S, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18(2):206–14.

    CAS  PubMed  Google Scholar 

  161. Hwang Y, et al. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry. 2013;3(10):e321.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gardiner EJ, et al. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J Psychiatr Res. 2013;47(4):425–37.

    PubMed  Google Scholar 

  163. Busse S, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26(8):1273–9.

    CAS  PubMed  Google Scholar 

  164. Müller N, et al. The immune system and schizophrenia: an integrative view. Ann N Y Acad Sci. 2000;917(1):456–67.

    PubMed  Google Scholar 

  165. Müller N, et al. Cellular and humoral immune system in schizophrenia: a conceptual re-evaluation. World J Biol Psychiatry. 2000;1(4):173–9.

    PubMed  Google Scholar 

  166. Mayilyan KR, Weinberger DR, Sim RB. The complement system in schizophrenia. Drug News Perspect. 2008;21(4):200.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Khandaker GM, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70.

    PubMed  PubMed Central  Google Scholar 

  168. Fernandez-Egea E, et al. Peripheral immune cell populations associated with cognitive deficits and negative symptoms of treatment-resistant schizophrenia. PLoS One. 2016;11(5):e0155631.

    PubMed  PubMed Central  Google Scholar 

  169. Ding M, et al. Activation of Th17 cells in drug naïve, first episode schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;51:78–82.

    CAS  Google Scholar 

  170. Debnath M, Berk M. Th17 pathway–mediated immunopathogenesis of schizophrenia: mechanisms and implications. Schizophr Bull. 2014;40:1412–21. p. sbu049

    PubMed  PubMed Central  Google Scholar 

  171. Drexhage RC, et al. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro-and anti-inflammatory forces. Int J Neuropsychopharmacol. 2011;14(6):746–55.

    CAS  PubMed  Google Scholar 

  172. Sallusto F, et al. T-cell trafficking in the central nervous system. Immunol Rev. 2012;248(1):216–27.

    PubMed  Google Scholar 

  173. Gyülvészi G, Haak S, Becher B. IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo. Eur J Immunol. 2009;39(7):1864–9.

    PubMed  Google Scholar 

  174. Borovcanin M, et al. Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J Psychiatr Res. 2012;46(11):1421–6.

    PubMed  Google Scholar 

  175. Dimitrov DH, et al. Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: potential role for IL-17 pathway. Schizophr Res. 2013;151(1):29–35.

    PubMed  Google Scholar 

  176. Lin A, et al. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res. 1998;32(1):9–15.

    CAS  PubMed  Google Scholar 

  177. Kowalski J, et al. Neuroleptics normalize increased release of interleukin-1β and tumor necrosis factor-α from monocytes in schizophrenia. Schizophr Res. 2001;50(3):169–75.

    CAS  PubMed  Google Scholar 

  178. Spanakos G, et al. Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients. Schizophr Res. 2001;47(1):13–25.

    PubMed  Google Scholar 

  179. Pourgholaminejad A, et al. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine. 2016;85:51–60.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Pourgholaminejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pourgholaminejad, A., Tahmasebinia, F. (2019). The Role of Th17 Cells in Immunopathogenesis of Neuroinflammatory Disorders. In: Mitoma, H., Manto, M. (eds) Neuroimmune Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-19515-1_3

Download citation

Publish with us

Policies and ethics