Advertisement

Conceptualization of the Problem Space in Design Science Research

  • Alexander Maedche
  • Shirley Gregor
  • Stefan MoranaEmail author
  • Jasper Feine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11491)

Abstract

Design science research (DSR) aims to deliver innovative solutions for real-world problems. DSR produces Information Systems (IS) artifacts and design knowledge describing means-end relationships between problem and solution spaces. A key success factor of any DSR research endeavor is an appropriate understanding and description of the underlying problem space. However, existing DSR literature lacks a solid conceptualization of the problem space in DSR. This paper addresses this gap and suggests a conceptualization of the problem space in DSR that builds on the four key concepts of stakeholders, needs, goals, and requirements. We showcase the application of our conceptualization in two published DSR projects. Our work contributes methodologically to the field of DSR as it helps DSR scholars to explore and describe the problem space in terms of a set of key concepts and their relationships.

Keywords

Problem space Design science research Requirements Needs Goals Stakeholders 

References

  1. 1.
    Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)CrossRefGoogle Scholar
  2. 2.
    Kuechler, W., Vaishnavi, V.: A framework for theory development in design science research: multiple perspectives science research: multiple perspectives. J. Assoc. Inf. Syst. 13, 395–424 (2012)Google Scholar
  3. 3.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manage. Inf. Syst. 24, 45–77 (2007)CrossRefGoogle Scholar
  4. 4.
    Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016)CrossRefGoogle Scholar
  5. 5.
    Sonnenberg, C., vom Brocke, J.: Evaluations in the science of the artificial – reconsidering the build-evaluate pattern in design science research. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS, vol. 7286, pp. 381–397. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29863-9_28CrossRefGoogle Scholar
  6. 6.
    Denyer, D., Tranfield, D., Van Aken, J.E.: Developing design propositions through research synthesis. Organ. Stud. 29, 393–413 (2008)CrossRefGoogle Scholar
  7. 7.
    Chandra, L., Seidel, S., Gregor, S.: Prescriptive knowledge in IS research: conceptualizing design principles in terms of materiality, action, and boundary conditions. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 4039–4048 (2015)Google Scholar
  8. 8.
    Baskerville, R., Pries-Heje, J.: Explanatory design theory. Bus. Inf. Syst. Eng. 2, 271–282 (2010)CrossRefGoogle Scholar
  9. 9.
    Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8, 312–335 (2007)Google Scholar
  10. 10.
    Deng, Q., Ji, S.: A review of design science research in information systems: concept, process, outcome, and evaluation. Pacific Asia J. Assoc. Inf. Syst. 10, 1–36 (2018)Google Scholar
  11. 11.
    Purao, S.: Truth or Dare. J. Database Manag. 24, 51–66 (2013)CrossRefGoogle Scholar
  12. 12.
    Peffers, K., Tuunanen, T., Niehaves, B.: Design science research genres: introduction to the special issue on exemplars and criteria for applicable design science research. Eur. J. Inf. Syst. 27, 129–139 (2018)CrossRefGoogle Scholar
  13. 13.
    Baskerville, R., Baiyere, A., Gregor, S., Hevner, A., Rossi, M.: Design science research contributions: finding a balance between artifact and theory. J. Assoc. Inf. Syst. 19, 358–376 (2018)Google Scholar
  14. 14.
    Winter, R.: Design science research in Europe. Eur. J. Inf. Syst. 17, 470–475 (2008)CrossRefGoogle Scholar
  15. 15.
    Van de Ven, A.H.: Engaged Scholarship: A Guide for Organizational and Social Research. Oxford University Press, Oxford (2007)Google Scholar
  16. 16.
    Getzels, J.W.: Problem finding: a theoretical note. Cogn. Sci. 3, 167–172 (1979)CrossRefGoogle Scholar
  17. 17.
    Einstein, A., Infeld, L.: The Evolution of Physics. Simon & Schuster, New York (1938)zbMATHGoogle Scholar
  18. 18.
    Dorst, K.: The core of “design thinking” and its application. Des. Stud. 32, 521–532 (2011)CrossRefGoogle Scholar
  19. 19.
    Cross, N.: Expertise in design: an overview. Des. Stud. 25, 427–441 (2004)CrossRefGoogle Scholar
  20. 20.
    Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge (1998)Google Scholar
  21. 21.
    Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design research. MIS Q. 35, 1–20 (2011)CrossRefGoogle Scholar
  22. 22.
    Walls, J.G., Widmeyer, G.R., El Sawy, O.A.: Building an information system design theory for vigilant EIS. Inf. Syst. Res. 1, 36–59 (1992)CrossRefGoogle Scholar
  23. 23.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)CrossRefGoogle Scholar
  24. 24.
    Thuan, N.H., Drechsler, A., Antunes, P.: Construction of design science research questions. Commun. Assoc. Inf. Syst. 44(1), 20 (2019)Google Scholar
  25. 25.
    Zobel, J.: Writing for Computer Science, 3rd Edn. (2014)zbMATHCrossRefGoogle Scholar
  26. 26.
    Getzels, J.W.: Problem-finding and the inventiveness of solutions. J. Creat. Behav. 9, 12–18 (1975)CrossRefGoogle Scholar
  27. 27.
    Alvesson, M., Sandberg, J.: Generating research questions through problematization. Acad. Manage. Rev. 36, 247–271 (2011)Google Scholar
  28. 28.
    Heidegger, M.: Basic Writings. HarperCollins, New York (1993)Google Scholar
  29. 29.
    ISO/IEC/IEEE International Standard: Systems and software engineering – Vocabulary. ISO/IEC/IEEE (2010)Google Scholar
  30. 30.
    Association for Project Management: Glossary. https://www.apm.org.uk/body-of-knowledge/glossary/
  31. 31.
    Glinz, M.: A Glossary of Requirements Engineering Terminology (2017)Google Scholar
  32. 32.
    Arazy, O., Kumar, N., Shapira, B.: A theory-driven design framework for social recommender systems. J. Assoc. Inf. Syst. 11, 455–490 (2010)Google Scholar
  33. 33.
    Meth, H., Mueller, B., Maedche, A.: Designing a requirement mining system. J. Assoc. Inf. Syst. 16, 799–837 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Maedche
    • 1
  • Shirley Gregor
    • 2
  • Stefan Morana
    • 1
    Email author
  • Jasper Feine
    • 1
  1. 1.Institute of Information Systems and Marketing (IISM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Australian National UniversityCanberraAustralia

Personalised recommendations