Skip to main content

Mathematical Modeling of Immune-Mediated Processes in Coagulation and Anticoagulation Therapy

  • Chapter
  • First Online:
A Celebration of the EDGE Program’s Impact on the Mathematics Community and Beyond

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 18))

Abstract

Thousands of people each year succumb to complications from deep vein thrombosis (DVT). DVT occurs when blood flow in the veins is blocked by a clot. Individuals with DVT are at increased risk of experiencing pulmonary embolism (PE), in which small pieces of the clot break off and travel to the lungs. PE can lead to lung damage and even death. Mechanisms implicated in DVT may comprise an imbalance in the body, poor circulation, inflammation, or an immune response. Given the complex interplay of mediating factors in DVT, it is important to understand the role that each plays in thrombus and embolus formation. In this work, we develop and implement a mathematical model of venous clot formation and dissolution by describing interactions between inflammation, blood cells, and various chemical factors. We then use the model to identify factors essential to embolus formation and discuss implications for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johanna Altmann, Smriti Sharma, and Irene M Lang. Advances in our understanding of mechanisms of venous thrombus resolution. Expert Review of Hematology, 9(1):69–78, 2016.

    Google Scholar 

  2. Volker Brinkmann, Ulrike Reichard, Christian Goosmann, Beatrix Fauler, Yvonne Uhlemann, David S Weiss, Yvette Weinrauch, and Arturo Zychlinsky. Neutrophil extracellular traps kill bacteria. Science, 303(5663):1532–1535, 2004.

    Google Scholar 

  3. Ivan Budnik and Alexander Brill. Immune factors in deep vein thrombosis. Trends in Immunology, 39(8):610–623, August 2018.

    Google Scholar 

  4. Lisette de Pillis, Erica J. Graham, Kaitlyn Hood, Yanping Ma, Ami Radunskaya, and Julie Simons. Injury-initiated clot formation under flow: a mathematical model with warfarin treatment. In T. Jackson and A. Radunskaya, editors, Applications of Dynamical Systems in Biology and Medicine, volume 158 of IMA Volumes in Mathematics and Its Applications, pages 75–98. Springer, 2015.

    Google Scholar 

  5. Jose Antonio Diaz and Daniel Durant Myers. Inflammation, thrombogenesis, fibrinolysis, and vein wall remodeling after deep venous thrombosis. In Inflammatory Response in Cardiovascular Surgery, pages 175–183. Springer, 2013.

    Google Scholar 

  6. Priscilla Elizondo and Aaron L Fogelson. A mathematical model of venous thrombosis initiation. Biophysical Journal, 111:2722–2734, December 2016.

    Google Scholar 

  7. Bernd Engelmann and Steffen Massberg. Thrombosis as an intravascular effector of innate immunity. Nature Reviews Immunology, 13(1):34, 2013.

    Google Scholar 

  8. C. Farrera and B. Fadeel. Macrophage clearance of neutrophil extracellular traps is a silent process. Journal of Immunology, 191(5):2647–2656, 2013.

    Google Scholar 

  9. Antonio Fasano and Adélia Sequeira. Hemomath: The Mathematics of Blood, volume 18. Springer, 2017.

    MATH  Google Scholar 

  10. Aaron L Fogelson, Yasmeen H Hussain, and Karin Leiderman. Blood clot formation under flow: the importance of factor XI depends strongly on platelet count. Biophysical Journal, 102(1):10–18, 2012.

    Google Scholar 

  11. Centers for Disease Control and Prevention. Data and statistics on venous thromboembolism. https://www.cdc.gov/ncbddd/dvt/data.html. Accessed: 2018-08-28.

  12. Tobias A Fuchs, Alexander Brill, Daniel Duerschmied, Daphne Schatzberg, Marc Monestier, Daniel D Myers, Shirley K Wrobleski, Thomas W Wakefield, John H Hartwig, and Denisa D Wagner. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences, 107(36):15880–15885, 2010.

    Google Scholar 

  13. Mehran Ghasemzadeh and Ehteramolsadat Hosseini. Platelet-leukocyte crosstalk: linking proinflammatory responses to procoagulant state. Thrombosis research, 131(3):191–197, 2013.

    Google Scholar 

  14. Peter Hoang, Alex Wallace, Mark Sugi, Andrew Fleck, Yash Pershad, Nirvikar Dahiya, Hassan Albadawi, Grace Knuttinen, Sailendra Naidu, and Rahmi Oklu. Elastography techniques in the evaluation of deep vein thrombosis. Cardiovascular diagnosis and therapy, 7(Suppl 3):S238, 2017.

    Google Scholar 

  15. Andrew S Kimball, Andrea T Obi, Jose A Diaz, and Peter K Henke. The emerging role of nets in venous thrombosis and immunothrombosis. Frontiers in immunology, 7:236, 2016.

    Google Scholar 

  16. Andrew L Kuharsky and Aaron L Fogelson. Surface-mediated control of blood coagulation: The role of binding site densities and platelet deposition. Biophysical Journal, 80:1050–1074, 2001.

    Google Scholar 

  17. Karin Leiderman and Aaron L Fogelson. Grow with the flow: a spatial–temporal model of platelet deposition and blood coagulation under flow. Mathematical Medicine and Biology: a journal of the IMA, 28:47–84, 2011.

    MathSciNet  MATH  Google Scholar 

  18. GD Lowe. Virchow’s triad revisited: abnormal flow. Pathophysiology of Haemostasis and Thrombosis, 33(5–6):455–457, 2002.

    Google Scholar 

  19. Nigel Mackman. New insights into the mechanisms of venous thrombosis. The Journal of clinical investigation, 122(7):2331–2336, 2012.

    Google Scholar 

  20. Amit A Patel, Yan Zhang, James N Fullerton, Lies Boelen, Anthony Rongvaux, Alexander A Maini, Venetia Bigley, Richard A Flavell, Derek W Gilroy, Becca Asquith, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. Journal of Experimental Medicine, 214(7):1913–1923, 2017.

    Google Scholar 

  21. Farbod Nicholas Rahaghi, Jasleen Kaur Minhas, and Gustavo A Heresi. Diagnosis of deep venous thrombosis and pulmonary embolism: New imaging tools and modalities. Clinics in chest medicine, 39(3):493–504, 2018.

    Google Scholar 

  22. Prakash Saha, Julia Humphries, Bijan Modarai, Katherine Mattock, Matthew Waltham, Colin E Evans, Anwar Ahmad, Ashish S Patel, Sobath Premaratne, Oliver TA Lyons, et al. Leukocytes and the natural history of deep vein thrombosis: current concepts and future directions. Arteriosclerosis, thrombosis, and vascular biology, 31(3):506–512, 2011.

    Google Scholar 

  23. C Schulz, B Engelmann, and S Massberg. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. Journal of Thrombosis and Haemostasis, 11(s1):233–241, 2013.

    Google Scholar 

  24. Charlotte Summers, Sara M Rankin, Alison M Condliffe, Nanak Singh, A Michael Peters, and Edwin R Chilvers. Neutrophil kinetics in health and disease. Trends in immunology, 31(8):318–324, 2010.

    Google Scholar 

  25. Marie-Luise von Brühl, Konstantin Stark, Alexander Steinhart, Sue Chandraratne, Ildiko Konrad, Michael Lorenz, Alexander Khandoga, Anca Tirniceriu, Raffaele Coletti, Maria Köllnberger, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. Journal of Experimental Medicine, pages jem–20112322, 2012.

    Google Scholar 

  26. T Wajima, GK Isbister, and SB Duffull. A comprehensive model for the humoral coagulation network in humans. Clinical Pharmacology & Therapeutics, 86(3):290–298, 2009.

    Google Scholar 

Download references

Acknowledgements

This project builds on previous work that was initiated at the WhAM! workshop hosted at the Institute for Mathematics and Its Applications in September 2013. We thank Trachette Jackson for co-organizing the workshop, our teammates for being generally fabulous, the IMA for hosting the event, the NSF for funding, and the AWM for facilitating the workshop itself.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica J. Graham .

Editor information

Editors and Affiliations

Appendices

Appendix

Model Variables

The model consists of interactions between 86 state variables, many of them taken from [4]. A schematic of these interactions is given in Fig. 7. We gather here descriptions of all of the state variables for ease of reference; for more details, refer to [4].

The largest group of state variables consists of clotting factors (molecules) and complexes that are involved in the coagulation cascade. These factors are often denoted by roman numerals, e.g., “factor IX,” or “factor II.” Clotting factors can be either inactive, or active, typically denoted by an “a,” as in factor IX (inactive) and factor IXa (active). Here, we use Z i to denote the inactive clotting factor i (zymogen) and E i to denote the active factor (enzyme). Concentrations are shown with square brackets, or, to simplify the notation, concentrations of factors are denoted by lowercase letters. So [Z 9] = z 9 and [E 9] = e 9 represent the concentrations of factor IX and factor IXa, respectively. Factors that are bound to platelets are denoted with a superscript m, as in \(e_9^m\) or \(z_9^m\). Certain enzymes can bind to specific sites on platelets. These specifically bound enzymes are denoted with superscripts m ∗ or h, as in \(e_{11}^{m*}\), \(e_{11}^{h}\) or, when both binding sites are used, \(e_{11}^{h,m*}\).

In addition to these clotting factors, we have the following variables, some of which have already been listed in Sect. 3.

F :

Fibrin

F g :

Fibrinogen (fibrin precursor)

P :

Plasmin

P g :

Plasminogen (plasmin precursor)

TFPI :

Tissue factor pathway inhibitor

APC :

Activated protein C

TM :

Thrombomodulin

W :

Vessel wall (endothelial) activation level, with values between 0 (unactivated) and 1 (fully activated)

[NET] :

Concentration of leukocyte-derived NETs

TF :

Average concentration of active (decrypted) tissue factor expressed per activated monocyte

\(L_u^m\), \(L_a^p\), \(L_a^e\) :

Concentration of unactivated and mobile, activated and bound to platelets, and activated and endothelium-bound leukocytes, respectively

\(P_a^b\), \(P_a^l\), \(P_a^e\),\(P_a^m\) :

Concentration of activated platelets bound to other platelets, leukocytes, endothelium, or unbound (mobile), respectively

Complexes are shown as molecules joined by a colon, as in TM : E 2 or TM : E 2 : APC. Some complexes have special names:

TEN = VIII :IXa = platelet-bound tenase

PRO = Va:Xa = prothrombinase.

Model Equations

Here we give the complete list of model equations incorporating immune-mediated mechanisms to coagulation in the veins. Following [6], we eliminate the endothelium-dependent kinetic equations from the model in [4], as the current model does not distinguish between sub- and intact endothelium. As such, the following variables are omitted, with the necessary reactions appearing in the modified equations: \(e_2^{ec},~APC^{ec},~e_9^{ec},~e_{10}^{ec}\). Specific changes from the previous model [4] which models arterial coagulation (in vivo framework) are highlighted in purple.

(1)
(2)
(3)
(4)
(5)
(6)
$$\displaystyle \begin{aligned} &{\genfrac{}{}{}{}{\mathrm{d}{P_u^m}}{\mathrm{d}{t}}} = k_{\mathrm{flow}}^p (P^{\mathrm{up}}-P_u^m) + k^-_{\text{adh}} P_a^e \end{aligned} $$
(7)
(8)
(9)
(10)
(11)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{z_{9}}}{{\mathrm{d}}{t}} = -k_{9}^{\mathrm{on}}z_{9}p_{9}^{\mathrm{avail}} +k_{9}^{\mathrm{off}}z_{9}^{m} +k_{\mathrm{flow}}(z_9^{\mathrm{up}}-z_9) -k_{z_9:e_7^m}^+ z_9e_7^m + k_{z_9:e_7^m}^- [Z_9:E_7^m] \end{aligned} $$
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}z_7 = -k_7^{\mathrm{on}} z_7 [TF]^{\mathrm{avail}} + k_7^{\mathrm{off}}z_7^m - k_{z_7:e_2}^+ z_7e_2 + k_{z_7:e_2}^- [Z_7:E_2] - k_{z_7:e_{10}}^+ z_7 e_{10} {} \end{aligned} $$
(20)
(21)
(22)
(23)
(24)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_{10} = -k_{10}^{\mathrm{on}}e_{10}p_{10}^{\mathrm{avail}} +k_{10}^{\mathrm{off}}e_{10}^{m} -k_{z_{10}:e_7^m}^{\mathrm{cat}}[Z_{10}:E_7^m] \end{aligned} $$
(25)
(26)
(27)
(28)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_5 = -k_{5}^{\mathrm{on}}e_{5}p_{5}^{\mathrm{avail}} +k_{5}^{\mathrm{off}}e_{5}^{m} +k_{z_5:e_2}^{\mathrm{cat}} [Z_5:E_2] + k_{e_5:APC}^- [APC:E_5] \end{aligned} $$
(29)
(30)
(31)
(32)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_8 = -k_{8}^{\mathrm{on}}e_{8}p_{8}^{\mathrm{avail}} +k_{8}^{\mathrm{off}}e_{8}^{m}+k_{\mathrm{flow}}(e_8^{\mathrm{up}}-e_8) +k_{z8:e2}^{\mathrm{cat}}[Z_8:E_2] - k_{8}^{deg} e_8 \end{aligned} $$
(33)
(34)
(35)
(36)
(37)
(38)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}z_2^m = k_2^{\mathrm{on}}p_2^{\mathrm{avail}}z_2-k_2^{\mathrm{off}}z_2^m -k_{z_2^m:PRO}^{+}[PRO]z_2^m+k_{z_2^m:PRO}^{-}[Z_2^m:PRO] \end{aligned} $$
(39)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_2^m = k_2^{\mathrm{on}}p_{2s}^{\mathrm{avail}}e_2-k_2^{\mathrm{off}}e_2^m \end{aligned} $$
(40)
(41)
(42)
(43)
(44)
(45)
(46)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_7:E_2] =k_{z_7:e_2}^+ z_7e_2 - (k_{z_7:e_2}^{\mathrm{cat}} + k_{z_7:e_2}^-) [Z_7:E_2]-k_{\mathrm{flow}}[Z_7:E_2] \end{aligned} $$
(47)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_7:E_{10}] = k_{z_7:e_{10}}^+ z_7e_{10} - (k_{z_7:e_{10}}^{\mathrm{cat}} + k_{z_7:e_{10}}^-) [Z_7:E_{10}]-k_{\mathrm{flow}}[Z_7:E_{10}] \end{aligned} $$
(48)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_7^m:E_{10}] = k_{z_7^m:e_{10}}^+ z_7^me_{10} - (k_{z_7^m:e_{10}}^{\mathrm{cat}} + k_{z_7^m:e_{10}}^-) [Z_7^m:E_{10}] \end{aligned} $$
(49)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_7^m:E_{2}] = k_{z_7:e_{2}}^+ z_7^me_{2} - (k_{z_7:e_{2}}^{\mathrm{cat}} + k_{z_7:e_{2}}^-) [Z_7^m:E_{2}] \end{aligned} $$
(50)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_{10}:E_{7}^m] = k_{z_{10}:e_{7}^m}^+ z_{10}e_7^m - (k_{z_{10}:e_{7}^m}^{\mathrm{cat}} + k_{z_{10}:e_{7}^m}^-) [Z_{10}:E_{7}^m] \end{aligned} $$
(51)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_{10}^m:TEN] =k_{z_{10}^m:TEN}^+[TEN]z_{10}^m-(k_{z_{10}^m:TEN}^{\mathrm{cat}}+k_{z_{10}^m:TEN}^-)[Z_{10}^m:TEN] \end{aligned} $$
(52)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_5:E_2] =k_{z_5:e_2}^+ z_5e_2 - (k_{z_5:e_2}^{\mathrm{cat}} + k_{z_5:e_2}^-)[Z_5:E_2]-k_{\mathrm{flow}}[Z_5:E_2] \end{aligned} $$
(53)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_5^m:E_{10}^m] =k_{z_5^m:e_{10}^m}^+ z_5^me_{10}^m - (k_{z_5^m:e_{10}^m}^{\mathrm{cat}} + k_{z_5^m:e_{10}^m}^-)[Z_5^m:E_{10}^m] \end{aligned} $$
(54)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_5^m:E_2^m] =k_{z_5:e_2^m}^+ z_5^me_2^m - (k_{z_5:e_2^m}^{\mathrm{cat}} + k_{z_5:e_2^m}^-)[Z_5^m:E_2^m] \end{aligned} $$
(55)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_8^m:E_{10}^m] =k_{z_8^m:e_{10}^m}^+ z_8^me_{10}^m - (k_{z_8^m:e_{10}^m}^{\mathrm{cat}} + k_{z_8^m:e_{10}^m}^-)[Z_8^m:E_{10}^m] \end{aligned} $$
(56)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_8^m:E_2^m] =k_{z_8^m:e_2^m}^+ z_8^me_2^m - (k_{z_8^m:e_2^m}^{\mathrm{cat}} + k_{z_8^m:e_2^m}^-)[Z_8^m:E_2^m] \end{aligned} $$
(57)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_8:E_2] =k_{z_8:e_2}^+ z_8e_2 - (k_{z_8:e_2}^{\mathrm{cat}} + k_{z_8:e_2}^-)[Z_8:E_2]-k_{\mathrm{flow}}[Z_8:E_2] \end{aligned} $$
(58)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[APC:E_8^m] =k_{e_8^m:APC}^+[APC]e_8^m-(k_{e_8^m:APC}^{\mathrm{cat}}+k_{e_8^m:APC}^-)[APC:E_8^m] \end{aligned} $$
(59)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_9:E_7^m] = k_{z_9:e_7^m}^+z_9e_7^m - (k_{z_9:e_7^m}^{\mathrm{cat}} + k_{z_9:e_7^m}^-)[Z_9:E_7^m] \end{aligned} $$
(60)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_2^m:PRO] =k_{z_2^m:PRO}^+z_2^m[PRO]-(k_{z_2^m:PRO}^{\mathrm{cat}}+k_{z_2^m:PRO}^-)[Z_2^m:PRO] \end{aligned} $$
(61)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[APC:E_5^m] =k_{e_5^m:APC}^+[APC]e_5^m-(k_{e_5^m:APC}^{\mathrm{cat}}+k_{e_5^m:APC}^-)[APC:E_5^m] \end{aligned} $$
(62)
$$\displaystyle \begin{aligned} &{\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_7:E_9] } {=k_{z_7:e_9}^+z_7e_9 - (k_{z_7:e_9}^{\mathrm{cat}} + k_{z_7:e_9}^-)[Z_7:E_9] } \end{aligned} $$
(63)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_9^{m*} =k_9^{\mathrm{on}}p_{91}^{\mathrm{avail}}e_9 -k_9^{\mathrm{off}}e_9^{m*}+k_{e_8^m:e_9^m}^-[TEN^*]-k_{e_8^m:e_9^m}^+e_8^me_9^{m*} \end{aligned} $$
(64)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[TEN^*] =-k_{e_8^m:e_9^m}^-[TEN^*]+k_{e_8^m:e_9^m}^+e_8^me_9^{m*} \end{aligned} $$
(65)
(66)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[APC:E_5] = k_{e_5:APC}^+e_5[APC]-(k_{e_5:APC}^{\mathrm{cat}} + k_{e_5:APC}^-)[APC:E_5] \end{aligned} $$
(67)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[APC:E_8] = k_{e_8:APC}^+e_8[APC]-(k_{e_8:APC}^{\mathrm{cat}} + k_{e_8:APC}^-)[APC:E_8] \end{aligned} $$
(68)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}z_{11} = k_{\mathrm{flow}}(z_{11}^{\mathrm{up}}-z_{11}) -k_{z_{11}}^{on}z_{11}p_{11}^{\mathrm{avail}}+k_{z_{11}}^{\mathrm{off}}z_{11}^{m} -k_{z_{11}:e_2}^+z_{11}e_2 + k_{z_{11}:e_2}^- [Z_{11}:E_2] \end{aligned} $$
(69)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_{11} = k_{\mathrm{flow}}(e_{11}^{\mathrm{up}}-e_{11}) -k_{e_{11}}^{\mathrm{on}}e_{11}p_{111}^{\mathrm{avail}}+k_{e_{11}}^{\mathrm{off}}e_{11}^{m*} \end{aligned} $$
(70)
(71)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_{11}^{m*} = k_{e_{11}}^{\mathrm{on}}e_{11}p_{111}^{\mathrm{avail}}-k_{e_{11}}^{\mathrm{off}}e_{11}^{m*} \end{aligned} $$
(72)
(73)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_{9}^m:E_{11}^{m*}] =k_{z_9:e_{11}}^+z_9^me_{11}^{m*}-(k_{z_9:e_{11}}^-+k_{z_9:e_{11}}^{\mathrm{cat}})[Z_9^m:E_{11}^{m*}] \end{aligned} $$
(74)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_{11}:E_2] = k_{\mathrm{flow}}([Z_{11}:E_2] ^{\mathrm{up}}-[Z_{11}:E_2]) + k_{z_{11}:e_2}^+ z_{11}e_2 - (k_{z_{11}:e_2}^- + k_{z_{11}:e_2}^{\mathrm{cat}})[Z_{11}:E_2] \end{aligned} $$
(75)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_9:E_{11}] = k_{\mathrm{flow}}([Z_9:E_{11}]^{\mathrm{up}}-[Z_9:E_{11}])+k_{z_9:e_{11}}^+ z_9e_{11} - (k_{z_9:e_{11}}^-+k_{z_9:e_{11}}^{\mathrm{cat}})[Z_9:E_{11}] \end{aligned} $$
(76)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}e_{11}^h = k_{\mathrm{flow}}(e_{11}^{h,up}-e_{11}^{h}) -k_{e_{11}}^{\mathrm{on}}e_{11}^hp_{111}^{\mathrm{avail}} +k_{e_{11}}^{\mathrm{off}}e_{11}^{h,m*} -k_{z_{11}}^{\mathrm{on}}e_{11}^hp_{11}^{\mathrm{avail}}+k_{z_{11}}^{\mathrm{off}}e_{11}^{h,m} \end{aligned} $$
(77)
(78)
(79)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_9:E_{11}^h] = k_{\mathrm{flow}}([Z_9:E_{11}^{h}]^{\mathrm{up}} - [Z_9:E_{11}^h] )+ k_{z_9:e_{11}}^+ z_9e_{11}^h - (k_{z_9:e_{11}}^- + k_{z_9:e_{11}}^{\mathrm{cat}})[Z_9:E_{11}^h] \end{aligned} $$
(80)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[Z_9^m:E_{11}^{h,m}] = k_{z_9:e_{11}}^+z_9^me_{11}^{h,m} - (k_{z_9:e_{11}}^-+k_{z_9:e_{11}}^{\mathrm{cat}})[Z_9^m:E_{11}^{h,m}] \end{aligned} $$
(81)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}}[E_{11}^h:E_2] =k_{\mathrm{flow}}([E_{11}^h:E_2]^{\mathrm{up}} - [E_{11}^h:E_2]) + k_{z_{11}:e_2}^+ e_{11}^h e_{2} - (k_{z_{11}:e_2}^- + k_{z_{11}:e_2}^{\mathrm{cat}})[E_{11}^h:E_{2}] \end{aligned} $$
(82)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{{\mathrm{d}}{t}}[E_{11}^{h,m*}:E_2^m] = k_{e_{11}^{h,m*}e_2^m}^+e_{11}^{h,m*}e_2^m - (k_{e_{11}^{h,m*}e_2^m}^-+k_{e_{11}^{h,m*}e_2^m}^{\mathrm{cat}})[E_{11}^{h,m*}:E_2^m] {} \end{aligned} $$
(83)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}} [Fg] = -\frac{v_{14}e_2[Fg]}{k_{14a}+{[Fg]}} -\frac{v_{15}[P][Fg]}{k_{15a}+[P]}+d_{Fg}(1-[Fg]) {} \end{aligned} $$
(84)
(85)
$$\displaystyle \begin{aligned} &\genfrac{}{}{}{}{\mathrm{d}{}}{\mathrm{d}{t}} [Pg] = -\frac{v_{21}e_2[P_g]}{k_{21a}+e_2} -\frac{v_{23}{[APC][VKH_2]}[Pg]}{(k_{23a}([APC]+c_{37a})+[VKH_2][APC])} {} \end{aligned} $$
(86)
(87)

Platelet Variables

Activated platelet dynamics are calculated as in Fogelson et al. [10]. At the beginning of each step, we store the total active platelet concentration , and the total active leukocyte population: \(L_a^i = L_a^p + L_a^e \cdot ls/leuk\). Then the change in platelet concentration during a given time step is calculated as

The current height of the platelet layer, nhc, is updated using

and, from this, the volume of the chemical boundary layer, v ch, and the platelet volume, v pl, are calculated:

These volumes are then used to adjust the platelet and chemical concentrations. Then platelet binding site availabilities are updated as follows:

$$\displaystyle \begin{aligned} p_2 &= p_2 + d_{PL}(p\cdot np_2/s_2) \end{aligned} $$
(88)
$$\displaystyle \begin{aligned} p_5 &= p_5 + d_{PL}(p\cdot np_5/s_5) \end{aligned} $$
(89)
$$\displaystyle \begin{aligned} p_8 &= p_8 + d_{PL}(p\cdot np_8/s_8) \end{aligned} $$
(90)
$$\displaystyle \begin{aligned} p_9 &= p_9 + d_{PL}(p\cdot np_9/s_9) \end{aligned} $$
(91)
$$\displaystyle \begin{aligned} p_{10} &= p_{10} + d_{PL}(p\cdot np_{10}/s_{10}) \end{aligned} $$
(92)
$$\displaystyle \begin{aligned} p_{11} &= p_{11} + d_{PL}(p\cdot np_{11}/s_{11}) \end{aligned} $$
(93)
$$\displaystyle \begin{aligned} p_{111} &= p_{111} + d_{PL}(p\cdot np_{111}/s_{111}). \end{aligned} $$
(94)

Additionally, the binding site availabilities for surface binding interactions are defined as follows (each step):

$$\displaystyle \begin{aligned} p^{\mathrm{avail}}_{PLAS}&= p_{PLAS} - [P_a^e] \end{aligned} $$
(95)
$$\displaystyle \begin{aligned} p_{10}^{\mathrm{avail}} &=p_{10}-z_{10}^m-e_{10}^m-[Z_{10}^m:TEN]-[Z_5^m:E_{10}^m] \end{aligned} $$
(96)
(97)
(98)
(99)
$$\displaystyle \begin{aligned} p_{2}^{\mathrm{avail}} &=p_2-z_2^m-[Z_2^m:PRO] -[Z_{11}^m:E_2^m] - [E_{11}^{h,m*}:E_2^m] \end{aligned} $$
(100)
$$\displaystyle \begin{aligned} p_{2s}^{\mathrm{avail}} &=p_{2s}-e_2^m-[Z_5^m:E_2^m]-[Z_8^m:E_2^m]-[Z_{11}^m:E_2^m] - [E_{11}^{h,m*}:E_2^m] \end{aligned} $$
(101)
$$\displaystyle \begin{aligned} p_{91}^{\mathrm{avail}} &=p_{91}-e_9^{m*}-([TEN^*]+[Z_{10}^m:TEN^*]) \end{aligned} $$
(102)
$$\displaystyle \begin{aligned} p_{11}^{\mathrm{avail}} &= p_{11}-z_{11}^m-e_{11}^{h,m*}-[Z_9^m:E_{11}^{h,m*}] -[Z_{11}^m:E_2^m] \end{aligned} $$
(103)
$$\displaystyle \begin{aligned} p_{111}^{\mathrm{avail}} &=p_{111}-e_{11}^{h,m*}-e_{11}^{m*}-[Z_9^m:E_{11}^{m*}]-[E_{11}^{h,m*}:E_2^m] \end{aligned} $$
(104)
$$\displaystyle \begin{aligned}{}[TM]^{\mathrm{avail}} &= [TM]-[TM:E_2]-[TM:E_2:APC]. \end{aligned} $$
(105)

Complete Parameter List

New Model Parameters

See Table 1.

Table 1 List of parameters used in the inflammation-based modification in the present work

Original Model Parameters

See Tables 2, 3, and 4.

Table 2 Modified list of reaction parameters for the clotting pathway except for vitamin K components
Table 3 Modified list of surface binding (on/off) parameters
Table 4 Modified list of platelet, surface and volume scalings, and flow-related parameters

Initial Conditions

See Table 5.

Table 5 Modified list of concentration scalings and nondimensional initial values used for all variables

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graham, E.J., Radunskaya, A. (2019). Mathematical Modeling of Immune-Mediated Processes in Coagulation and Anticoagulation Therapy. In: D'Agostino, S., Bryant, S., Buchmann, A., Guinn, M., Harris, L. (eds) A Celebration of the EDGE Program’s Impact on the Mathematics Community and Beyond . Association for Women in Mathematics Series, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-19486-4_18

Download citation

Publish with us

Policies and ethics