Skip to main content

Methods for Nonlinearly Constrained Problems

  • Chapter
  • First Online:
Nonlinear Optimization

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 282))

Abstract

As opposed to the previous chapter, the methods presented in this chapter allow the given constraints to be nonlinear. In the first section of this chapter, we consider problems with convex constraints, starting with the cutting plane method for nonlinear programming due to Kelley (1960). Although Kelley’s method suffers from a numerically slow convergence in comparison with other methods (except possibly for highly nonlinear constraints), we cover it here because of the considerable theoretical interest of the cutting plane principle. We continue with the generalized reduced gradient (GRG) method, which may be regarded as a standard technique for convex differentiable programming. Techniques for handling nondifferentiable functions using subgradients as well as methods for concave objective functions are then described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie J, Carpentier J (1969) Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. In: Fletcher R (ed.) Optimization. Academic Press, New York, pp. 37-47

    Google Scholar 

  • Agmon S (1954) The relaxation method for linear inequalities. Canadian Journal of Mathematics 6: 382-392

    Article  MathSciNet  Google Scholar 

  • Alizadeh F, Goldfarb D (2003) Second-order cone programming. Mathematical Programming 95: 3-51

    Article  MathSciNet  Google Scholar 

  • Anjos MF, Lasserre JB (2012) Introduction to semidefinite, conic, and polynomial optimziation. pp 1-22 in Anjos MF, Lasserre JB (eds.) Handbook on semidefinite, conic, and polynomial optimization. Springer, New York

    Chapter  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. (3rd ed.) Wiley, New York

    MATH  Google Scholar 

  • Bertsekas DP (2015) Convex optimization algorithms. Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  • Bertsekas DP (2016) Nonlinear programming. (3rd ed.) Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  • Boyd S, Vandenberghe L, (2004) Convex optimization. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Cornuejols G, TĂĽtĂĽncĂĽ R (2007) Optimization methods in finance. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Cottle RW, Pang JS, Stone RE (2009) The linear complementarity problem. Classics in Applied Mathematics, SIAM, Philadelphia

    Book  Google Scholar 

  • Cottle RW, Thapa MN (2017) Linear and nonlinear optimization. Springer-Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Eiselt HA, Pederzoli G, Sandblom C-L (1987) Continuous optimization models. De Gruyter, Berlin-New York

    Google Scholar 

  • Eiselt HA, Sandblom C-L (2000) Integer programming and network models. Springer-Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Eiselt HA, Sandblom C-L (2007) Linear programming and its applications. Springer-Verlag, Berlin-Heidelberg

    MATH  Google Scholar 

  • Fukushima M (1984) A descent algorithm for nonsmooth convex optimization. Mathematical Programming 30: 163-175

    Article  MathSciNet  Google Scholar 

  • Gomory RE (1963) An algorithm for integer solutions to linear programs. In Graves RL, Wolfe P (eds.) Recent advances in mathematical programming: pp. 269-302. McGraw-Hill, New York

    Google Scholar 

  • Goffin JL (1977) On the convergence rates of subgradient optimization methods. Mathematical Programming 13: 329-347

    Article  MathSciNet  Google Scholar 

  • Held M, Wolfe P, Crowder HP (1974) Validation of subgradient optimization. Mathematical Programming 6: 62-88

    Article  MathSciNet  Google Scholar 

  • Hendrix EMT, G.-TĂłth B (2010) Introduction to nonlinear and global optimization. Springer-Verlag, Gerlin-Heidelberg-New York

    Google Scholar 

  • Hitchcock FL (1941) The distribution of a product from several sources to numerous localities. Journal of Mathematical Physics 20: 224-230

    Article  MathSciNet  Google Scholar 

  • Horst R, Pardalos PM, Thoai NV (2000) Introduction to global optimization, vol. 2. Kluwer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Jahn J (2007) Introduction to the theory of nonlinear optimization. (3rd ed.), Springer-Verlag, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  • Kelley JE (1960) The cutting-plane method for solving convex programs. SIAM Journal 8: 703-712

    MathSciNet  MATH  Google Scholar 

  • Kiwiel, KC (1983) An aggregate subgradient method for nonsmooth convex minimization. Mathematical Programming 27: 320-341

    Article  MathSciNet  Google Scholar 

  • Lemarechal C (1975) An extension of Davidon methods to nondifferentiable problems. Mathematical Programming Study 3: 95-109

    Article  Google Scholar 

  • Luenberger DL, Ye Y (2008) Linear and nonlinear programming. (3rd ed.) Springer-Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Mifflin R (1982) A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization. Mathematical Programming Study 17: 77-90

    Article  MathSciNet  Google Scholar 

  • Motzkin TS, Sch­nberg IJ (1954) The relaxation method for linear inequalities. Canadian Journal of Mathematics 6: 393-404

    Article  MathSciNet  Google Scholar 

  • Nemirovski A (2007) Advances in convex optimization: conic programming. Proceedings of the International Congress of Mathematics, Madrid 2006. European Mathematical Society: 413-444

    Google Scholar 

  • Neumann K (1975) Operations Research Verfahren, Band 1. C. Hanser Verlag, MĂĽnchen-Wien

    Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization (2nd ed.). Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Pang JS (1995) Complementarity problems. In Horst R, Pardalos PM (eds.) Handbook of global optimization. Nonconvex optimization and its applications, vol 2. Springer, Boston, MA, pp. 271-338

    Google Scholar 

  • Polyak BT (1967) A general method of solving extremum problems. Soviet Mathematics Doklady 8: 593-597 (translated from the Russian)

    MATH  Google Scholar 

  • Polyak BT (1969) Minimization of unsmooth functionals. USSR Computational Mathematics and Mathematical Physics 9: 509-521 (translated from the Russian)

    Google Scholar 

  • Sandblom C-L (1980) Two approaches to nonlinear decomposition. Mathematische Operationsforschung und Statistik, Series Optimization 11: 273-285

    Article  MathSciNet  Google Scholar 

  • Shor Z (1964) On the structure of algorithms for the numerical solution of optimal planning and design problems. Dissertation, Cybernetics Institute, Kiev, Ukraine

    Google Scholar 

  • Sun W, Yuan Y (2006) Optimization theory and methods. Nonlinear programming. Springer-Verlag, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  • Tuy H (1995) D.C. optimization theory, methods and algorithms. In Horst R, Pardalos P (eds.) Handbook of global optimization. Kluwer, Boston, MA

    Google Scholar 

  • Tuy H (1998) Convex analysis and global optimization. Kluwer, Boston, MA

    Book  Google Scholar 

  • Tuy H (2005) Polynomial optimization: a robust approach. Pacific Journal of Optimization 1: 257-274

    MathSciNet  MATH  Google Scholar 

  • Tuy H, Al-Khayyal F, Thach PT (2005) Monotonic optimization: branch-and-cut methods. In: Audet C, Hansen P, Savard G (eds.) (2005) Surveys in global optimization. Springer, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Review 38: 49-95

    Article  MathSciNet  Google Scholar 

  • Wolfe P (1963) Methods of nonlinear programming. pp. 67-86 in Graves RL, Wolfe P (eds.) Recent advances in mathematical programming. McGraw Hill, New York

    MATH  Google Scholar 

  • Wolfe P (1970) Convergence theory in nonlinear programming. pp. 1-36 in Abadie J (ed.) Integer and nonlinear programming. North Holland, Amsterdam

    Google Scholar 

  • Wolfe P (1975) A method of conjugate subgradients for minimizing nondifferentiable functions. Mathematical Programming Study 3: 145-173

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eiselt, H.A., Sandblom, CL. (2019). Methods for Nonlinearly Constrained Problems. In: Nonlinear Optimization . International Series in Operations Research & Management Science, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-19462-8_7

Download citation

Publish with us

Policies and ethics